

D1.3 – PRELIMINARY VERSION OF CPSOSAWARE SYSTEM ARCHITECTURE

Authors Pavlos Kosmides (CTL), Eleni Adamopoulou (CTL)

Work
Package

WP1 – Requirements, Use Cases, Specifications and Architecture

 Abstract

This document focuses on the capturing and presentation of technical
specifications of the system components, including functional and non-
functional requirements. It introduces the CPSoSaware Technical Specification
Elicitation Framework: based on established requirements engineering
processes, the framework is aimed at eliciting a comprehensible list of system
and component requirements that will facilitate reaching a precise architecture
design for the CPSoSaware system. The results from applying the framework are
manifested as an aggregate collection of knowledge items related to technical
component specifications and requirements that take the form of a living
reference document accessible by all involved stakeholders, in the sense that it
will be frequently revisited and reiterated throughout the project lifetime. The
presentation of this living document, along with an account of the defined
architectural blocks and the preliminary version of the system architecture,
constitute the main outputs from this deliverable.

Funded by the Horizon 2020 Framework Programme
of the European Union

Ref. Ares(2020)7968314 - 28/12/2020

1

Deliverable Information

Work Package WP1 – Requirements, Use Cases, Specifications and Architecture

Task T1.3 – CPSoSaware System Specifications and Architecture

Deliverable title Preliminary Version of CPSoSaware System Architecture

Dissemination Level Public

Status F

Version Number 1.0

Due date 31/12/2020

Project Information

Project start and
duration

01/01/2020 – 31/12/2022, 36 months

Project Coordinator Industrial Systems Institute, ATHENA Research and Innovation Center

26504, Rio-Patras, Greece

Partners 1. ATHINA-EREVNITIKO KENTRO KAINOTOMIAS STIS TECHNOLOGIES TIS
PLIROFORIAS, TON EPIKOINONION KAI TIS GNOSIS (ISI)
* Coordinator

2. FUNDACIO PRIVADA I2CAT, INTERNET I INNOVACIO DIGITAL A CATALUNYA
(I2CAT),

3. IBM ISRAEL - SCIENCE AND TECHNOLOGY LTD (IBM ISRAEL

4. ATOS SPAIN SA (ATOS),

5. PANASONIC AUTOMOTIVE SYSTEMS EUROPE GMBH (PASEU)

6. EIGHT BELLS LTD (8BELLS)

7. UNIVERSITA DELLA SVIZZERA ITALIANA (USI),

8. TAMPEREEN KORKEAKOULUSAATIO SR (TAU)

9. UNIVERSITY OF PELOPONNESE (UoP)

10. CATALINK LIMITED (CATALINK)

11. ROBOTEC.AI SPOLKA Z OGRANICZONA ODPOWIEDZIALNOSCIA (RTC)

12. CENTRO RICERCHE FIAT SCPA (CRF)

13. PANEPISTIMIO PATRON (UPAT)

Website www.cpsosaware.eu

2

Control Sheet

VERSION DATE SUMMARY OF CHANGES AUTHOR

0.1 09/11/2020 Document outline created CTL

0.2 10/11/2020 v1 of Chapters 2 and 3 CTL

0.3 12/11/2020 v1 of Chapters 4 and 5 CTL

0.4 13/11/2020 Added Subsection 4.2 CTL

0.5 17/11/2020 Added executive summary and Chapter 6 CTL

0.6 02/12/2020 Added abstract and Appendix A CTL

0.7 09/12/2020 v2 of Chapter 5 CTL

0.8 15/12/2020 Internal review CTL

1.0 18/12/2020 Final version submitted to EC CTL

 NAME
Prepared by CTL

Reviewed by Pekka Jääskeläinen (TAU), Georgios Keramidas (UoP)

Authorised
by CTL

DATE RECIPIENT
9/12/2020 Project Consortium

18/12/2020 European Commission

3

Table of Contents

Executive Summary ... 7
1 Introduction ... 8

1.1 Document Structure .. 8
1.2 Definitions and Acronyms .. 8

2 Requirements Elicitation and Analysis - Background .. 10
2.1 A Broad Definition of Requirements Engineering ... 10
2.2 Methodologies for Capturing Requirements ... 11

2.2.1 Document Analysis .. 11
2.2.2 Interviews with Stakeholders ... 11
2.2.3 Requirement Specification Templates ... 11
2.2.4 Use Case Analysis ... 12

2.3 Requirements Elicitation Objectives in CPSoSaware ... 12
3 CPSoSaware Technical Specification Elicitation Framework .. 14

3.1 Component Specification Templates .. 14
3.1.1 Descriptive Component Specification ... 14
3.1.2 Component Inputs and Outputs ... 15
3.1.3 Functional and Non-functional Requirements ... 15
3.1.4 Deployment and Integration Requirements ... 16

3.2 Consulting with Stakeholders ... 16
3.3 Analysis of Description of Action .. 17
3.4 Formalization of Captured Requirements ... 17

4 Presentation of Captured CPSoSaware Specifications ... 19
4.1 Roles ... 19
4.2 Technical Component Specifications ... 19

4.2.1 Data Collection Module ... 19
4.2.2 Intra-Communication Sim Tool ... 20
4.2.3 PoCL-Remote .. 22
4.2.4 Slice Manager .. 22
4.2.5 LightEdge .. 24
4.2.6 Hardware Accelerator IP Cores ... 24
4.2.7 Security Accelerators for CPS Security Agents/Sensors ... 25
4.2.8 Model Transformation to OpenCL .. 26
4.2.9 Xilinx XRT KPI Monitoring ... 27
4.2.10 Modelling Orchestration Tool ... 28
4.2.11 Visual Localization .. 29
4.2.12 Deep Multimodal Scene Understanding .. 30
4.2.13 User Behaviour Monitoring ... 31
4.2.14 AI Acceleration .. 32
4.2.15 PoCL-accel .. 33
4.2.16 Multimodal Localization API .. 33
4.2.17 PathPlanning API .. 34
4.2.18 XR Tools for Increasing Situational Awareness ... 36
4.2.19 CPS Layer Security Sensors/Agents .. 37
4.2.20 TCE (openasip.org) Soft Cores ... 38
4.2.21 OpenCL Wrapper for Hardware IP Cores ... 39

4

4.2.22 HW/SW profiling and analysis based on Vitis Tools .. 39
4.2.23 Architecture Optimization ... 41
4.2.24 Intra-Communication Manager ... 42
4.2.25 Security Runtime Monitoring .. 43
4.2.26 V2X Simulator ... 44
4.2.27 Manufacturing Environment Simulation ... 45
4.2.28 AV Simulation ... 46
4.2.29 Commissioning of Hardware Components in CPSs .. 47
4.2.30 HLS based SW to HW Transformation ... 49
4.2.31 Extended Reality lifelong learning tools/Interfaces for integrated CPSoS 49

5 CPSoSaware System Architecture – Preliminary Version ... 52
5.1 Architectural Blocks ... 53

5.1.1 CPSoS System Layer ... 53
5.1.2 CPS/CPHS Layer ... 53
5.1.3 Simulation and Training Layer .. 54

5.2 Preliminary Architecture Block Diagram ... 54
6 Conclusions and Next Steps ... 56
References ... 57
Appendix A: CPSoSaware Component Specification Template ... 58

5

List of Figures

Figure 1. The process from requirements analysis to system architecture [Liao, 2002]. 10
Figure 2. Top-down vs bottom-up use case analysis approaches [Regnell, 1996]. 12
Figure 3. CPSoSaware proposed architecture 52
Figure 4. UML diagram - Architectural blocks 54
Figure 5. UML diagram - Architectural blocks and sub-blocks 54
Figure 6. UML diagram - Architectural blocks and sub-blocks with technical components 55

List of Tables

Table 1. CPSoSaware compatible roles 19

6

7

Executive Summary

This document constitutes D1.3 “Preliminary Version of CPSoSaware System Architecture” and reports on
the outcomes of the first phase of Task 1.3 during the first year of the project. The focus is on the technical
specifications of the system components, including functional and non-functional requirements. Towards
this direction, D1.3 introduces the CPSoSaware Technical Specification Elicitation Framework: based on
established requirements engineering processes, the framework is aimed at eliciting a comprehensible
list of system and component requirements that will facilitate reaching a precise architecture design for
the CPSoSaware system. The results from applying the framework are manifested as an aggregate
collection of knowledge items related to technical component specifications, requirements, and
interfaces that take the form of a living reference document accessible by all involved stakeholders, in
the sense that it will be frequently revisited and reiterated throughout the project lifetime. The
presentation of this living document, along with an account of the defined architectural blocks and the
preliminary version of the system architecture, constitute the main outputs from this deliverable.

8

1 Introduction

When referring to software and hardware systems, the term “architecture” is used metaphorically, with
a meaning equivalent to the architecture of a building, referring to an outline for the system to be
developed and the tasks that need to be completed in order to reach the final result [Perry & Wolf, 1992].
Therefore, system architecture is aimed at specifying the fundamental components of a (sophisticated)
system, the involved software and hardware elements, their interrelations, and the properties of both
elements and relations [Clements et al., 2003].

Specifying the architecture of a system is heavily interlinked with the process of requirements
engineering, which is aimed at assessing whether the developed system meets the purpose for which it
was initially intended [Nuseibeh & Easterbrook, 2000]. In fact, the two processes are often seen as
complementary: architecture is aimed at the “how”, while requirements engineering is aimed at the
“what”; both of them, nevertheless, revolve around stakeholder concerns, needs and wishes [Shekaran
et al., 1994].

In this context, the overarching goal of this document is to present the technical specifications of the
CPSoSaware system components, which have been elicited based on established requirements
engineering processes and will lead to deriving a preliminary version of the system architecture.

1.1 Document Structure

The rest of the document is structured as follows:

• Chapter 2 is an introduction to requirements engineering, requirements elicitation
methodologies and the CPSoSaware objectives within this context;

• Chapter 3 describes the methodologies applied for capturing of CPSoSaware technical component
specifications and requirements;

• Chapter 4 presents the collected knowledge per technical component of the CPSoSaware system;

• Chapter 5 presents a preliminary version of the CPSoSaware system architecture;

• Chapter 6 concludes the document with some final remarks and directions for the next steps.

1.2 Definitions and Acronyms

Below is a list of the most relevant acronyms used in the document together with their recurring
definitions:

Acronym / Term Definition

CICL CPSoSaware Intra-CPS Communication Layer

CPS Cyber-Physical System

CPSoS Cyber-Physical System of Systems

CSAIE Cognitive System AI Engine

DCCI Distributed, Cognitive and Cooperative Intelligence

9

DoA Grant Agreement No. 871738 – CPSoSAware. Annex 1 Description of the Action.

DSL Domain-Specific Language

FPGA Field-Programmable Gate Array

GPU Graphics Processing Unit

IP Intellectual Property

ME Monitoring Engine

ML Machine Learning

MRE Modelling and Redesign Engine

ODE OpenCL Description Execution

P2P Peer to Peer / Point to Point

PoCL Portable Computing Language

RE Requirements Engineering

SICL System Inter-Communication Layer

SoC System-on-Chip

SRMM Security Runtime Monitoring and Management

SW Software

TRL Technology Readiness Level

XRT Human in the loop situational awareness using XR tools

10

2 Requirements Elicitation and Analysis - Background

This chapter briefly introduces Requirements Engineering and focuses on two of its key activities,
requirements elicitation and analysis. The most popular methodologies for eliciting requirements are then
presented, followed by an overview of the objectives of the requirements capturing process within
CPSoSaware.

2.1 A Broad Definition of Requirements Engineering

As discussed in the introduction, within the context of software and hardware systems development,
Requirements Engineering (RE) is the process of assessing whether the developed system meets the
purpose for which it was initially intended [Nuseibeh & Easterbrook, 2000]. This process entails the
identification of stakeholders and their respective needs from the system, as well as the documentation
of these needs in a way that will facilitate their analysis and will drive the subsequent implementation of
components that will address them. Due to the numerous challenges involved (e.g., communication gaps
with stakeholders, unclear or even conflicting goals and needs, etc.), RE is considered highly critical for
delivering an accurate software architecture design and plays a key role particularly during the first steps
in the development process, as illustrated in Figure 1 [Liao, 2002].

Figure 1. The process from requirements analysis to system architecture [Liao, 2002].

RE involves two main activities: (a) requirements elicitation, which is aimed at specifying the system to
be developed in a form that the end-user understands, and, (b) requirements analysis, which promises
to deliver an analysis model that can be unambiguously interpreted by the developers of the system
[Bruegge & Dutoit, 2009].

Regarding requirements, a typical distinction is often made between user requirements, i.e., the
requirements derived from the potential end-users, and technical requirements, i.e., the requirements
referring to the technical aspects of the components to be developed. Although the elicitation of the
former usually precedes the latter, a successful system design should involve the collection and analysis
of both types of requirements.

More specifically, user requirements typically describe aspects of the system from the end-user
perspective that are not directly related to the functional behaviour of the system, like, e.g., response
time, accuracy, etc., and are also known as non-functional requirements. On the other hand, functional
requirements specify the explicit functions of a system and its interaction with the environment, and give

11

an outlook of its technical aspects, processes, and dependencies. Consequently, functional requirements
are the key driver in defining the architecture of the system.

In the case of a complex software system consisting of numerous software components, the system
requirements include the functional and non-functional requirements of each component, as well as the
specifications that refer to the system-wide behaviour and functionality. In order to avoid confusion
between the two levels (i.e., system vs component) and to better organize the pertinent knowledge, it is
common practice to come up with lists of system and component-level use cases and then map
requirements to them accordingly.

2.2 Methodologies for Capturing Requirements

During requirements elicitation, it is common practice to apply a variety of related methodologies and
techniques, in order to obtain a more holistic outlook of the domain and to acquire knowledge from
various stakeholders, such as end-users, domain and technical experts [Eid, 2015]. This subsection briefly
presents the most established methodologies in gathering requirements.

2.2.1 Document Analysis

The analysis of existing documentation is a valuable first step in requirements elicitation, since it leads to
a better understanding of the domain and the system to be developed and can help substantially during
the next steps, e.g., for formulating more accurate questions for the interviews with stakeholders (see
next subsection). And, inversely, if certain responses from the interviews are unclear, analysing existing
documentation may help in clarifying things. The downsides to this approach are that (a) it is a time-
consuming process, and, (b) the documentation may be out of date.

2.2.2 Interviews with Stakeholders

There are two types of interviews with stakeholders in order to elicit requirements: one-on-one sessions
and group interviews. One-on-one sessions are arguably the most common technique for gathering
requirements and should be well-prepared beforehand, in order to get the most out of them. The
appropriate stakeholders to be interviewed should be identified and a list of both open-ended and close-
ended questions must be prepared. The former questions facilitate retrieving more holistic and high-level
knowledge and allow the interviewer to focus on more specific aspects with more elaborate subsequent
questions, while the latter are more useful in covering more topics in a deeper manner and in less time.
Once the list of questions is complete, it is typically a good practice to send them to the interviewee prior
to the interview so that they better prepare (see also next subsection). An additional good practice is to
record the session (with the interviewee’s consent), so that the responses can be revisited at a later time.

Group interviews, on the other hand, are similar to one-on-one interviews, with the exception that more
persons are being interviewed at the same time. This type of interview is ideal when the interviewees all
have similar positions in the organization and/or experience and background. The key advantage of group
interviews is that responses by one interviewee may trigger further discussion by the others, which leads
to eliciting richer information during the interview. The major drawback is that group interviews are hard
to schedule, since establishing a date/time slot that works well for all parties can prove quite challenging.

2.2.3 Requirement Specification Templates

Requirement specification templates are structured questionnaires circulated to stakeholders prior to
interviews and are very well suited for involving multiple parties at once, guiding them to provide focused

12

responses and descriptions on specific aspects of the system to be developed. In case of unclear
responses, clarifications may be discussed during the interviews.

In the literature one can find several established requirement specification templates, like, e.g., Volere1,
which can be extended, in order to include additional fields specific to the system at hand.

2.2.4 Use Case Analysis

Use cases in software engineering are the sets of actions or events that define the interactions between
a system and the involved agents; the latter being human or machines external to the system [Bruegge &
Dutoit, 2009]. Use cases do not directly point to requirements, but analysing them leads to identifying
desired system behaviours and qualities, which may be implicitly converted to requirements. In the cases
of complex systems consisting of multiple components, use cases are typically defined per component or
per group of components, and their analysis will lead to extracting functional and non-functional
requirements at the component level.

Figure 2. Top-down vs bottom-up use case analysis approaches [Regnell, 1996].

According to Regnell (1996), the process of extracting requirements from use cases can be either bottom-
up, with the aggregation of component-level use cases comprising the system-level use cases, or top-
down, where high-level use cases and related actors are initially identified, and then sub-scenarios and
requirements are specified towards the component-level (see Figure 2).

2.3 Requirements Elicitation Objectives in CPSoSaware

Our overarching objective for the requirements elicitation process during this first period (M1-M12) of
the project was focused on generating a project-wide reference document collaboratively with the rest of
the involved partners that will focus on the following:

(a) Functional and non-functional requirements both on the component and the system level,
identifying the desired functionalities of each component and of the system as a whole.

(b) Mapping of use cases and roles to the technical requirements.
(c) Dependencies per system component.

1 https://www.volere.org/templates/volere-requirements-specification-template/

13

(d) Potential implications and conflicts between requirements.

Towards this objective, we adopted the requirements elicitation methodologies presented in the previous
subsection and came up with a reference document, which we intend to have in the form of a “living
document” that will be frequently revisited and reiterated. This way, the requirements will be refined and
re-adjusted throughout the project’s lifecycle. The first version of the document and its elements is
described in the rest of this deliverable, while the next iterations of the document will be reported in the
upcoming deliverables D1.4 “Second Version of CPSoSaware System Architecture” (due M24) and D1.5
“Final CPSoSaware System Architecture” (due M36).

14

3 CPSoSaware Technical Specification Elicitation Framework

Within CPSoSaware and under the scope of WP1, a task force has undertaken the application of
established requirement engineering processes towards fulfilling the requirement elicitation objectives
and enabling a precise architecture design for the CPSoSaware system. This chapter is aimed at presenting
the activities that were performed to capture technical component specifications, driven by the team’s
expertise and methodologies found in literature.

3.1 Component Specification Templates

Inspired by the Volere methodology and its variations (see Subsection 2.2.3), a detailed requirement
specification template was assembled and distributed to partners involved in the design and
implementation of technical components. The template intended to provide a common vocabulary for
the homogeneous expression of technical and non-technical details. Divided into four logical sections, the
template incorporated free text fields for questions regarding the component high-level description,
expected inputs and outputs, functional and non-functional requirements, and deployment/integration
conditions.

Since this effort started early in the project and proceeded in parallel with the definition of pilot use cases,
the participants were encouraged to only insert available information - omitting fields that remained yet
undecided - and periodically revisit the document with updates deriving from the evolvement of system-
level requirements.

A detailed presentation of the template segments is presented in the following sections. The complete
specification template can be found in Appendix A: CPSoSaware Component Specification Template.

3.1.1 Descriptive Component Specification

The first part of the component specification template intended to capture high-level component
metadata. More specifically, it included the following fields:

• Task name: The task(s) from the Description of Action (DoA) where the component
implementation is detailed.

• Task leader: The partner(s) assigned to lead the corresponding task(s) in the DoA.

• Component name: The name of the technical component.

• Type: An indication whether the component is a software, a hardware, or a combination of both.

• Short description: An abstract of the component’s functionality and purpose within CPSoSaware.

• Methodologies that will be used: A short description of the technical and/or scientific
methodologies orchestrated for the component implementation.

• User-defined scenarios (non-technical): A set of component-level use case descriptions in a non-
technical manner.

• Map to project objectives: An association of the technical component with the CPSoSaware
project objectives as described in the DoA.

• Relevant Use Cases: An association of the technical component with the CPSoSaware pilot use
cases.

15

• Estimated date of first release that can be deployed/integrated: An early estimation for the first
delivery expressed as the month of the project’s lifecycle.

3.1.2 Component Inputs and Outputs

A template section is dedicated to collecting information regarding a component’s interfaces and
expected inputs/outputs. Along with the headway in the pilot use case definitions, the acquisition of such
knowledge will prove critical for the design of meaningful pipelines for the CPSoSaware system. A mapping
between data owners and data consumers is expected to facilitate development and integration. The
corresponding questionnaire fields for data inputs are:

• Main inputs: A description of the expected input sources for this component.

• Input data from partner: The partner(s) responsible for providing the input(s), either via their
technical components or in the form of datasets, etc.

• Nature of expected input: The expected format for the requested input (e.g. JSON format, video
streams, image files, etc.).

• Related Scenarios: Use case scenarios and pilots that associate with the production and/or
processing of these data.

• Interfaces: The interface(s) provided or required by the technical component for the retrieval of
input data.

• Triggered by: The event(s) or condition(s) that will trigger the execution or functionality of the
component.

Similarly, the fields for expected outputs are:

• Main outputs: A description of the output(s) that will be produced by this component.

• Output data to partner: The partner(s) responsible for consuming the generated output(s), either
via their technical components or in the form of datasets, etc.

• Nature of expected output: The expected format for the produced output (e.g., JSON format,
video streams, image files, etc.).

• Related Scenarios: Use case scenarios and pilots that associate with the consumption and/or
processing of these data.

• Interfaces: The interface(s) provided or required by the technical component for the delivery of
output data.

3.1.3 Functional and Non-functional Requirements

The definition of requirements at the technical component level is meant to portray functional and non-
functional necessities for the design, operation, and integration of the component itself. This bottom-up
approach suggests that the collection of requirements per component will constitute a subset of the
system-level requirement set. Consequently, this effort will be associated with the top-down definition of
requirements at the pilot use case level, reported in the upcoming D1.2 “Requirements and Use Cases”.
Therefore, the corresponding fields in the template are:

• Main functional requirements: A set of technical requirements for the design, development, and
functioning of the component.

16

• Main non-functional requirements: A set of qualitative and quantitative conditions that the
component should cover. These can be related with topics such as scalability, security,
accessibility, availability and more.

3.1.4 Deployment and Integration Requirements

The final section of the component specification template aims at eliciting technical details related to the
development, deployment, and integration with the rest of the CPSoSaware system. More specifically,
the included fields are:

• Development environment: The development environment incorporates the operating
system(s), IDE(s) and programming language(s) used for the implementation of the component.

• Execution time: An estimation for processing time of the component, in case of including heavy
processing tasks, etc.

• Execution frequency: This indicates how often the execution is expected to take place, in case of
periodic executions.

• Software requirements: The component’s dependency from external software.

• Hardware requirements: The component’s dependency from external hardware.

• Communications: Connectivity requirements, such as access to the Internet, Bluetooth interface,
etc.

• Integration requirements: Specific requirements regarding the integration of the component
with the rest of the system.

• Deployment requirements: Specific requirements regarding the deployment of the component.

• Security requirements: Specific requirements to avoid any potential security issues.

• Privacy requirements: Specific requirements to avoid any potential privacy issues.

• Critical factors: Any critical factors that might affect the development or functionality of the
component.

• Containerization: The ability to be containerized (e.g. with Docker) if the component of discourse
is a software module.

3.2 Consulting with Stakeholders

Extensive discussions with involved technology experts allowed the extraction of requirements, system
specifications, and potential architecture designs. A series of project meetings, periodic WP1 meetings,
ad-hoc sessions with stakeholders and offline communications enabled the dissemination of the
component specification templates, the collection of the component list, the elicitation of useful
information and, finally, the establishment of a common understanding on the overall CPSoSaware system
design. Recurring communications also ensured better comprehension over the applied requirements
elicitation framework and allowed the iteration of the process towards a more precise requirement
elaboration.

17

3.3 Analysis of Description of Action

The requirements elicitation process at the early stages of the project demanded the detailed study and
analysis of the main reference document, the DoA. The detailed descriptions of the overall project
objectives, the proposed system architecture, and the use cases offer a playground for the extraction of
functional and non-functional requirements. Work package and task descriptions extensively portray the
expected technical components and features. As a result, details from the document were initially studied
to identify the main architectural blocks and sub-blocks, while the use case analysis resulted in a
preliminary requirement set. Since the DoA was authored prior to the project kick-off, the knowledge
derived from the document acted as the basis for the requirements elicitation process, and needed to be
verified, refined, and extended along with the maturing of the project’s objectives.

3.4 Formalization of Captured Requirements

A critical part of the requirements engineering process is requirement management. This includes the
mechanisms for documenting, prioritizing, tracking, agreeing, and communicating specifications to
relevant stakeholders. Therefore, we have pursued the aggregation of collected knowledge related to
technical component specifications and requirements into a single living document, accessible by all
involved stakeholders, where information is encoded in a uniform format. This document intends to limit
ambiguity and facilitate the reference and update of requirements throughout the project lifetime.

The document is in MS Excel format, containing several tables that are briefly described below.
Information is encoded using appropriate prefixes/suffixes and colour codes to facilitate browsing and
search.

Technical component list

This table includes the collection of CPSoSaware technical components, along with short descriptions,
architectural blocks, state-of-the-art, and requirements. More specifically, the table contains the
following columns:

• Code: A unique identifier assigned to the technical component, by assembling the prefix TC, the
task number, and an incrementing integer (e.g., TC3.1.2). This field also acts as a hyperlink to the
component specification template previously filled by the corresponding technology expert, in
order to enable the fast review of provided information.

• Component name: The name of the technical component.

• Type: Indicates whether this is a software, hardware, or both.

• Task: Indicates the task(s) involved in the design and implementation of the component.

• Partner: The partner(s) leading the design and implementation of the component.

• Short description: A textual description of the scope, functionality, and objectives of the
component.

• Architectural block: A set of architectural blocks and sub-blocks has been identified by the study
of DoA (see Section 0). This field allows the selection from a pre-defined list of values [CPSoS
system layer, CPS/CPHs layer, Simulation and training]. This classification of components enables
the conceptualization of the architecture.

• Architectural sub-block: Similarly, the component is assigned to the appropriate sub-block. The
list of sub-blocks also derives from the DoA analysis and conferencing with stakeholders.

18

• Functional requirements: A set of technical/functional requirements that characterize the
component as a standalone module. The requirements are encoded using the component’s code,
along with the suffix .R and an incrementing integer (e.g. TC3.1.2.R2) to enable unambiguous
references to requirements.

• Non-functional requirements: Just like above, non-functional requirements are listed and
encoded using the suffix .NFR and an incrementing integer (e.g. TC3.1.2.NFR1).

• State-of-the-Art / Innovation: A short textual description for the state-of-the-art in the
technological domain of the technical component, along with potential innovation and advance
beyond the state-of-the-art.

• Current TRL: The technology readiness level of the component.

Use cases list

This table enlists the identified use cases at the component level (see Section 2.2.4). Use cases are
expressed with the simple pattern Actor -> interacts (Use case or functionality) -> Component. The table
contains the following columns:

• Component code: A reference to the technical component using its unique identifier.

• Component name: The name of the technical component.

• Use cases: The set of use cases for this technical component. Each use case is assigned a code
combining the component code with the suffix _UC and an incrementing integer (e.g.
TC3.1.2_UC1).

• Actor: The entity that interacts with the component within the context of the specific use case.
An actor, which assumes a role, can be a human that interfaces with the component or another
software/hardware. System-compatible roles are extensively described on a dedicated table.

• If Actor is HW/SW, identify: If the actor interacting with the use case has been defined as some
hardware or software component, it should be denoted here which external or system
component that is. The corresponding component code is the required value (e.g. TC3.1.1). This
is meant to facilitate the precise architecture definition. In several cases, an actor’s appropriate
use case code is also defined in this field, indicating connections like: The use case of component
TC3.1.1 (TC3.1.1_UC1) will interact with the use case of component TC3.1.2 (TC3.1.2_UC2). The
expected result of this drill is to generate sequences of interconnected use cases which will be
later used for the definition of sequence diagrams and system-level use cases.

• Role’s interaction: A textual description of the interaction between the actor and the component
within the context of this use case.

Roles list

This is a table for listing actor types (roles), and - in case of human roles - their responsibilities, rights, and
duties towards the system.

19

4 Presentation of Captured CPSoSaware Specifications

This section presents the knowledge captured via the application of the specification elicitation
framework described in Sections 2 and 3. This knowledge is contained in the living document, arranged in
structures, as presented in Section 3.4.

4.1 Roles

As already mentioned, roles indicate the types of actors that interact with the CPSoSaware system and its
technical components. These actors may be other system components, external systems or humans
participating in use cases. The identification of the CPSoSaware-compatible roles, along with their
potential interactions with CPSoSaware, is crucial for the definition of precise use cases and meaningful
architecture designs. Defining roles is a continuous process, highly affected by the ongoing design of pilot
use cases, therefore it is performed on an iterative basis. Table 1 presents the currently defined actor
types.

Table 1. CPSoSaware compatible roles

Actor Interaction

Analyst Uses data-driven processes to gain insights about required actions and
potential improvements

CPS/CPSoS Designer Designs the models for CPSs/CPSoS simulations, communication, and
deployment.

End-user Provides specifications, requirements and preferences for the modelling
and system design of CPSs and CPSoS

HW/SW component -

4.2 Technical Component Specifications

This section outlines the specifications for the technical components provided by the responsible partners
who filled in the respective information in the shared reference document. The information was then
homogenized into a uniform format by lead partner CTL and is presented subsequently per component.

4.2.1 Data Collection Module

The Data Collection Module is the component based on ElasticSearch that will be developed in order to
ingest, store and manage data that is obtained from the activities in T2.1 covering the analysis of user
skills/factors, virtual cognitive user/environment models and metrics modelling.

Code: TC2.1.1 Task: T2.1 Partner: 8Bells Type: Software TRL: 2

Architectural block: Architectural sub-block:

20

CPSoS system layer Cognitive System AI Engine (CSAIE)

State-of-the-Art / Innovation:

Still unclear if a well-known tool will be used. For the first step of the questionnaires, we can use google forms
in order to collect the data from the pilots and then we will study the way to store them, analyse and
graphically represent the outputs (e.g., ElasticSearch Kibana is considered)

Functional requirements Non-functional requirements

TC2.1.1.R1 Use an events list to register events.

TC2.1.1.R2 Be able to demonstrate in graphical way
the HF models (that can be initially designed in UML
format).

TC2.1.1.R3 Use statistics to track important changes in
variables.

TC2.1.1.R4 Should provide library of human metrics.

TC2.1.1.R5 Should be able to display in a graphical
way these metric.

TC2.1.1.R6 The operator should be able to query the
Data Collection data metrics.

TC2.1.1.R7 The operator will be able to input data
from a CSV/Spreadsheet into the DCM.

TC2.1.1.R8 The system shall ensure the confidentiality
and integrity of the data being transmitted in the
system.
TC2.1.1.R9 The system shall ensure the availability of
its services to the relevant stakeholders.

TC2.1.1.NFR1 The DCM should scale automatically to
meet the demand of new DCM metric data.

TC2.1.1.NFR2 The DCM should provide a secure
housing of The metrics data.

Component-level Use Cases

Name Actor type Actor (SW/HW) Interaction

TC2.1.1_UC1
Store end-user
specifications

Analyst

End-user

Collects and stores end-user requirements and
preferences (skills, gender, expertise with ICTs,
health condition, daily routines, etc) via
surveys, interviews, group sessions, etc.

TC2.1.1_UC2
Analyse end-user
specifications

Analyst

End-user

Models users by analysing activities,
behavioural parameters, etc, by retrieving
stored knowledge. Specifies the number and
type of users to be involved in each pilot use
case.

4.2.2 Intra-Communication Sim Tool

Tool designed and implemented to match network requirements imposed by the application and
deployed CPSoS to proposed network technologies and configurations (e.g., modulation, signal strength,

21

duty cycle etc.) and network topologies. The tool will be based on the NS3 simulator and it will be built
based on experimentation on models of dominant wireless protocols for intra-communication, e.g., BLE,
ZigBee/802.15.4, Wi-Fi.

Code: TC2.2.1 Task: T2.2 Partner: UoP Type: Software TRL: 4

Architectural block:

Simulation and training

Architectural sub-block:

-

State-of-the-Art / Innovation:

We are not aware of any platform that is able to deliver the NS3 simulator through a well-defined API.

Functional requirements Non-functional requirements

TC2.2.1.R1 The user should be able to feed the
simulator with specific network scenario
configuration.

TC2.2.1.R2 The tool will be able to record the
simulation results in log files.

TC2.2.1.R3 The tool will be able to process the log files
and extract the evaluation results of the simulation.

TC2.2.1.R4 The simulation outcomes will be able to be
indexed in database and visualized (e.g.
Prometheus/Grafana, Elasticsearch/Kibana)

TC2.2.1.R5 The evaluation results will be formulated
and fed back to the input of the tool to perform
optimizations through iterations.

TC2.2.1.NFR1 The tool should be able to scale
according to the load.

TC2.2.1.NFR2 Adoption of microservices paradigm
(e.g. containerization).

TC2.2.1.NFR2 Authentication/authorization schemes
will be supported.

TC2.2.1.NFR3 The tool will expose well-defined APIs to
allow third-party services to integrate

TC2.2.1.NFR4 The tool will be available online.

Component-level Use Cases

Name Actor type Actor (if SW/HW) Interaction

TC2.2.1_UC1
Define network
requirements

CPS/CPSoS
Designer Defines and models performance and energy

parameters.

TC2.2.1_UC2
Simulate network
topologies

CPS/CPSoS
Designer

Simulates various network technologies,
topologies and configurations based on defined
network requirements.

TC2.2.1_UC3
Generate
proposed network
technologies and
optimizations

CPS/CPSoS
Designer Retrieves the proposed network

configurations.

22

4.2.3 PoCL-Remote

Scalable distributed OpenCL runtime layer with P2P event synchronization capabilities.

Code: TC2.2.2 Task: T2.2 Partner: TAU Type: Software TRL: 3

Architectural block:

CPSoS system layer

Architectural sub-blocks:

CPSoSaware Modelling and Redesign Engine (MRE)

CPS Commissioning and CPS to System Inter-
Communication Layer components

State-of-the-Art / Innovation:

Previous similar projects did not focus on low latency aspects of CPS or edge offloading.

Functional requirements Non-functional requirements

TC2.2.2.R1 Provide access to all OpenCL-supported
devices in a network distributed platform from a single
host application.

TC2.2.2.R2 Support peer-to-per synchronization of
devices without host-application round trips.

TC2.2.2.NFR1 At most 15% overhead in latency on top
of the unavoidable network latencies.

TC2.2.2.NFR2 Can utilize 80% of the theoretical
bandwidth for buffer transfers.

Component-level Use Cases

Name Actor type Actor (if SW/HW) Interaction

TC2.2.2_UC1
Configure the
OpenCL runtime
layer

CPS/CPSoS
Designer Configures the parameters for the required

OpenCL runtime environment.

TC2.2.2_UC2
Commision/deploy
new HW/SW
components

 Requests the commissioning of a new
component to the OpenCL runtime.

TC2.2.2_UC3
Decommision
deployed HW/SW
components

 Requests the decommissioning of a component
from the OpenCL runtime.

4.2.4 Slice Manager

The i2CAT 5G platform is an open architecture software platform that facilitates the sharing and slicing of
5G infrastructure elements. This is achieved by leveraging new network virtualization solutions and
dynamic configuration enabled by 5G technologies (based on ETSI NFV and Network Slicing). The Slice
Manager is the main “entry point” and the “heart” of this platform, and it “hides” OpenStack, OSM
(OpenSourceMano), Racoon (i2CAT’ s RAN controller), and potentially other controllers behind it. It

23

provides a REST interface which can be used for either performing or triggering (via delegation to other
components) the following main functionalities:

• Manage (create/read/update/delete) computes, physical NWs, and Wi-Fi APs (mainly for
Infrastructure owners via the Dashboard);

• Manage (create/read/update/delete) chunks of the above resources (mainly for Slice Users via
the Dashboard);

• Manage (create/read/update/delete) slices as collections of the aforementioned chunks;
• Manage (create/read/update/delete) users, which are authenticated by AAA;
• Trigger the deployment of Network Services (NS) on specific slices, while performing related

configuration actions (that can be useful for diverse NSs during deployment, so that they function
properly).

Code: TC2.2.3 Tasks: T2.2, T4.2 Partner: i2CAT Type: Software TRL: 4

Architectural block:

CPSoS system layer

Architectural sub-blocks:

System Inter-Communication Layer

State-of-the-Art / Innovation:

Past projects did not focus on providing an end-to-end intelligent slice managing and orchestrating facilities for
the mobile users.

Functional requirements Non-functional requirements

TC2.2.3.R1 Secure identification of CPSs.

TC2.2.3.R2 Monitors and assures the behaviour and
performance of the various slices through collecting
network function and infrastructure data.

TC2.2.3.R3 Slice automation and orchestration.

TC2.2.3.R4 Need to support slice modelling by
changing various network functions, connection, and
links to create specific network services.

TC2.2.3.NFR1 Delay of service instantiate

TC2.2.3.NFR2 Service recovery failure and service
continuity

Component-level Use Cases

Name Actor type Actor (if SW/HW) Interaction

TC2.2.3_UC1
Create slices

CPS/CPSoS
Designer
End-user

Creates slices as collections of chunks
containing computes, physical NWs, and Wi-Fi
APs.

TC2.2.3_UC2
Update slices

CPS/CPSoS
Designer
End-user

 Updates slices, slice chunks and contained
computes, physical NWs, and Wi-Fi APs.

TC2.2.3_UC3
Delete slices

CPS/CPSoS
Designer
End-user

 Deletes slices, slice chunks and contained
computes, physical NWs, and Wi-Fi APs.

24

TC2.2.3_UC4
Trigger the
deployment of
Network Services

CPS/CPSoS
Designer
End-user

Triggers the deployment of NSs on specific
slices, while performing related configuration
actions (that can be useful for diverse NSs
during deployment, so that they function
properly).

4.2.5 LightEdge

LightEdge is responsible for bringing the MEC solutions for the mobile network operators and enable the
edge facilities among the end-users. Importantly, LightEdge helps end-users to move from the current 4G-
based system to 5G-enabled system.

Code: TC2.2.4 Tasks: T2.2, T4.2 Partner: i2CAT Type: Software TRL: 4

Architectural block:

CPSoS system layer

Architectural sub-blocks:

System Inter-Communication Layer

State-of-the-Art / Innovation:

Currently providing the MEC facilities to the end-users for smoothly transiting into 5G-based system from the
4G-enabled system. However, enabling the functionalities intelligent horizontal or vertical scaling of VNFs is still
far from achieved.

Functional requirements Non-functional requirements

TC2.2.4.R1 Potentially able to leverage the features
and functionality of OSM MANO.

TC2.2.4.R2 Complying with the Cloud native solutions
and allowing the containerized edge application.

TC2.2.4.R3 Capable of supporting the Local breakout
for enterprise application.

TC2.2.4.NFR1 Handling the user mobility

TC2.2.4.NFR2 Scalability between the LightEdge
enabled MEC servers

TC2.2.4.NRF3 Service failure recovery

Component-level Use Cases

Name Actor type Actor (if SW/HW) Interaction

TC2.2.4_UC1
Enable the MEC
service facilities to
the End-users

CPS/CPSoS
designer
End-user

 Bring the MEC facilities to the end-users

4.2.6 Hardware Accelerator IP Cores

This refers to FPGA-based IP core components. The FPGA IP cores will be automatically generated from
higher-level models by using an appropriate ML framework, whenever feasible. The IP cores will be
seamlessly integrated in the PoCL-based OpenCL run-time system by means of a hardware abstraction
layer (AlmaIF).

25

Code: TC2.3.1 Tasks: T2.3 Partner: UoP/ISI/TAU Type: Hardware & Software TRL: 6

Architectural block:

CPSoS system layer

Architectural sub-blocks:

HW/SW Component Library

State-of-the-Art / Innovation:

Previous work is fixed function, our work attempts to improve load balancing scenarios via software-based task
switching via (optional) soft core overlays.

End to end generation of HW blocks with various computational requirements. HW blocks will be automatically
generated from high-level models, and the focus is on making this seamless with the OpenCL-based platform.

Functional requirements Non-functional requirements

TC2.3.1.R1 Accelerate DNN inference in comparison to
software running in ARM.

TC2.3.1.NFR1 At least 20% faster 8b convolutions
achieved.

Component-level Use Cases

Name Actor type Actor (if SW/HW) Interaction

TC2.3.1_UC1
Configure FPGA-
based IP
accelerators

CPS/CPSoS
Designer

Configures metrics (e.g. memory and
computational throughputs and quantization
techniques of various levels).

TC2.3.1_UC2
Commission ML
Hardware to
OpenCL stack

CPS/CPSoS
Designer
HW/SW
component(s)

TC2.2.2 PoCL-Remote
(TC2.2.2_UC2)

Deploys the FPGA IP accelerator to the OpenCL
system software stack via a simple common
hardware/software interface visible to PoCL
run-time system.

4.2.7 Security Accelerators for CPS Security Agents/Sensors

FPGA based IP core components (interfaces) focused on security/cryptography.

Code: TC2.3.2 Tasks: T2.3, T2.4 Partner: USI Type: Hardware & Software TRL: 4

Architectural block:

CPSoS system layer

Architectural sub-blocks:

HW/SW Component Library

State-of-the-Art / Innovation:

Algorithmic modifications are provided in order to increase the performance of the cryptography primitives.
Such modifications are aiming to increase the parallel processing capabilities of the algorithm and rely on
performing analysis of the Data and control flow so that operations within the cryptographic primitive can be
disassociated so as to be parallelized. Apart from that the current state of the art is focused on providing
resistance against side channel attacks i.e. secret information leaking from an implementation as the algorithm
is executed. Latest research is focused on postquantum cryptography algorithms that are in the process of
getting standardized by NIST.

26

The SoC platform used as starting point features a Linux operating system but do not fully exploit the
capabilities of FPGA for accelerating/enforcing security. Reconfigurable hardware needs to be used to provide
more advanced security functionalities and to improve the performance.

Functional requirements Non-functional requirements

TC2.3.2.R1 Confidentiality: The components should
provide cryptography services for popular public and
private encryption algorithms). Support for public key
infrastructure should be possible).

TC2.3.2.R2 Data Integrity: The components should
provide cryptography services for popular message
integrity mechanisms include MAC functions, digital
signature, and authenticated encryption.

TC2.3.2.R3 Authentication: The components should be
able to provide authentication services including message
authentication, machine to machine (M2M)
authentication. The above security/cryptography
components should be able to operate in both pilots, in
supporting the security of the CAN bus protocol, and V2V
communication. Also, in supporting the security of on
device attacks in the industrial domain and the industrial
network protocols.

TC2.3.2.NFR1 Resistance against security attacks
(side channel attacks).

TC2.3.2.NFR2 Strong cryptographic strength.

TC2.3.2.NFR3 Reliability fault-tolerance.

TC2.3.2.NFR4 Efficiency (response time).

TC2.3.2.NFR5 Efficiency (constrained memory and
chip covered area resources).

TC2.3.2.NFR6 Flexibility.

TC2.3.2.NFR7 Interoperability.

Component-level Use Cases

Name Actor type Actor (if SW/HW) Interaction

TC2.3.2_UC1
Configure FPGA-
based IP
accelerators

CPS/CPSoS
Designer Configures metrics (e.g. memory and

computational throughputs).

TC2.3.2_UC2
Commission
security
agents/sensors
to OpenCL stack

CPS/CPSoS
Designer
HW/SW
component(s)

TC2.2.2 pocl-remote
(TC2.2.2_UC2)

Deploys the FPGA IP accelerator to the
OpenCL system software stack via a
simple common hardware interface.

4.2.8 Model Transformation to OpenCL

Code: TC2.3.3 Task: T2.3, Τ3.6, Τ4.6 Partner: UoP/ISI Type: Software TRL: 5

Architectural block:

CPSoS system layer

Architectural sub-block:

Modelling and Redesign Engine (MRE)

State-of-the-Art / Innovation:

27

ML/DNN models will be automatically transformed to OpenCL kernels of different complexity levels. The
transformation will be based on well know.

Functional requirements Non-functional requirements

TC2.3.3.R1 Profiling

TC2.3.3.R2 HLS based SW to HW Transformation

TC2.3.3.NFR1 Development of HW-SW Library with
reliable Components.

Component-level Use Cases

Name Actor type Actor (if SW/HW) Interaction

TC2.3.1_UC1
Configure FPGA-
based IP
accelerators

CPS/CPSoS
Designer

Configures metrics (e.g. memory and
computational throughputs and quantization
techniques of various levels).

TC2.3.1_UC2
Commission ML
Hardware to
OpenCL stack

CPS/CPSoS
Designer
HW/SW
component(s)

TC2.2.2 pocl-
remote
(TC2.2.2_UC2)

Deploys the FPGA IP accelerator to the OpenCL
system software stack via a simple common
hardware/software interface visible to PoCL
run-time system.

4.2.9 Xilinx XRT KPI Monitoring

Code: TC2.4.1 Task: T2.4, Τ3.6, Τ4.1 Partner: UoP Type: Software TRL: 6

Architectural block:

CPSoS system layer

Architectural sub-block:

Modelling and Redesign Engine (MRE)

State-of-the-Art / Innovation:

XRT FPGA monitoring services visible to remote nodes. Coordinated FPGA reconfiguration decisions at multiple
CPS levels.

Functional requirements Non-functional requirements

TC2.4.1.R1 Accelerate DNN inference in comparison to
software running in ARM. (TC2.3.1.R1)

TC2.4.1.R2 HLS based SW to HW Transformation
(TC5.1.1.R1)

TC2.4.1.R3 Commissioning: The component should be
able to collect hardware bitstreams IP Cores and
download them on the FPGA fabric of a
Multiprocessor System on Chip FPGA board.
(TC4.6.1.R1)

TC2.4.1.R4 Reconfigurability: The components should
be able to reconfigure the commissioned hardware IP
Cores on the FPGA fabric of a TC4.6.1.R3

TC2.4.1.NFR1 Development of HW-SW Library with
reliable Components (TC3.6.1.NFR1)

TC2.4.1.NFR2 The component should be able to
handle efficiently the configuration updates and
resolve any possible dependencies (TC4.6.1.NFR2)

TC2.4.1.NFR3 The component should be able to
provide integrity validation method in both ends (e.g.
hashes of the transferred payloads). (TC4.6.1.NFR3)

TC2.4.1.NFR4 The component should be aware of the
commissioning process’ status and handle failures
(e.g. rollback to previous versions). (TC4.6.1.NFR4)

28

Multiprocessor System on Chip FPGA board and
replace existing hardware IP Cores. (TC4.6.1.R2)

TC2.4.1.R5 Removal: The component should be able
to remove existing hardware IP Cores in the FPGA
fabric of a Multiprocessor System on Chip (MPSoS)
FPGA board. (TC4.6.1.R4)

TC2.4.1.R6 Accessibility: The component should be
able to communicate with the model based design
mechanism of the CPSoSaware layer in order to
deploy hardware IP Cores in the MPSoC board.
(TC4.6.1.R5)

Component-level Use Cases

Name Actor type Actor (if SW/HW) Interaction

TC2.4.1_UC1
Configure FPGA-
based IP
accelerators

CPS/CPSoS
Designer

Configures metrics (e.g. memory and
computational throughputs and quantization
techniques of various levels). Deploys the
FPGA IP accelerator to the OpenCL system
software stack via a simple common hardware
interface.

TC2.4.1_UC2
Commission ML
Hardware to
OpenCL stack

CPS/CPSoS
Designer
HW/SW
component(s)

Deploys the FPGA IP accelerator to the OpenCL
system software stack via a simple common
hardware/software interface visible to PoCL
run-time system. Deploys the FPGA IP
accelerator to the OpenCL system software
stack via a simple common hardware interface.

4.2.10 Modelling Orchestration Tool

The modelling orchestration tool captures the CPS overall, manages individual CPS inputs and outputs
between other CPSs, and orchestrates the CPSoS components in order to achieve a model of models.

Code: TC2.5.1 Tasks: T2.5 Partner: 8BELLS Type: Software TRL: 4

Architectural block:

CPSoS system layer

Architectural sub-blocks:

Modelling and Redesign Engine (MRE)

State-of-the-Art / Innovation:

The evaluation phase so far of the orchestrator component has selected a generic component which can be
further specified to the requirements of creating a decentralized and autonomous CPSoS model operation.
Occupus2 cloud orchestrator is the primary candidate to serve as the basis for the system. Furthermore,

2 Cloud agnostic orchestrator, flexible, allows for complex, constantly changing topologies.

29

Prometheus3 is being considered as a data collection and distribution system between CPS running models at
present.

Functional requirements Non-functional requirements

TC2.5.1.R1 User-driven orchestration control events to
initiate orchestration.

TC2.5.1.R2 Autonomic model-driven orchestration
control events by models.

TC2.5.1.R3 Integrate existing CPS modelling-simulation
tools.

TC2.5.1.NFR1 Minimize centralized control of the
orchestration.

TC2.5.1.NFR2 Reliable and secure autonomic
operations.

Component-level Use Cases

Name Actor type Actor (if SW/HW) Interaction

TC2.5.1_UC1
Integrate new
CPS/CPHS

CPS/CPSoS
Designer Provide CPS model for a new CPS to be

integrated in the CPSoS.

TC2.5.1_UC2
Associate CPS
inputs/outputs

CPS-specific inputs/outputs are associated to
other CPS inputs/outputs according to the
provided models.

4.2.11 Visual Localization

This component will handle the robustification to GPS spoofing attacks: Create a database in which every
record will include the descriptor of each image and the GPS coordinates. Given a set of images, a visual
search is applied against a set of relevant geo-tagged images from the database. As a result, a ranked list
of images is obtained sorted by descriptors distances. A weighted average of the GPS coordinates of the
extracted descriptors yield a corrected GPS value for the query image, providing a coarse localization fix.

Code: TC3.1.1 Tasks: T3.1 Partner: ISI Type: Software TRL: 3

Architectural block:

CPSoS system layer

Architectural sub-blocks:

Security Runtime Monitoring and Management (SRMM)

State-of-the-Art / Innovation:

TC3.1.1 will act as complement to TC3.3.1, facilitating the vehicle to localize itself, without relying on other
vehicles. Moreover, it will reduce the impact of GPS spoofing.

Functional requirements Non-functional requirements

TC3.1.1.R1 Trajectory of vehicle generated by CARLA. TC3.1.1.NFR1 Minimize the computational time of
visual search in the database.

3 Input sensory data from CPS to drive autonomic functionality and de-centralized approach.

30

TC3.1.1.R2 Database of geo-tagged images available.

Component-level Use Cases

Name Actor type Actor (if SW/HW) Interaction

TC3.1.1_UC1
Configure visual
localization

CPS/CPSoS
Designer

TC3.1.2 Deep
Multimodal Scene
Understanding
(TC3.1.2_UC2)

Provides a set of geo-tagged images for a given
environment/workspace and configures the
visual localization.

TC3.1.1_UC2
Sense user
location

HW/SW
component(s)

TC3.1.2 Deep
Multimodal Scene
Understanding
(TC3.1.2_UC2)

Inputs a query image for TC3.1.1 to identify
user's GPS coordinates.

4.2.12 Deep Multimodal Scene Understanding

The main objective of this module is to derive the semantic information within a given scene, namely,
understanding a scene. This is the basis for autonomous driving, traffic safety, vision-guided
manufacturing, or activity recognition. This module will deploy deep architectures to derive semantic
information from a fusion of sensor data and the fusion of their semantic interpretation, since
understanding a scene from an image or sequence of images requires more effort than simple feature
extraction. RGB/Lidar, RGB/depth data will be deployed, and this module will include algorithms and deep
architectures operating in distributed or centralized manner to define the operation of CPSs.

Code: TC3.1.2 Tasks: T3.1 Partner: ISI Type: Software TRL: 3

Architectural block:

CPS/CPHS layer

Architectural sub-blocks:

Monitoring Engine

State-of-the-Art / Innovation:

Literature encompasses a multitude of approaches to achieve multimodal data fusion and scene understanding
using RGBD, LIDAR, or a combination of the two. We aim to improve the current state-of-the-art proposing
accelerated yet robust deep architectures that fuse data either in the input layer or in the deeper layers.

Functional requirements Non-functional requirements

TC3.1.2.R1 Availability of RGBD and point cloud data.

TC3.1.2.R2 Camera mapping strategy and LIDAR
processing approach for effective data fusion.

TC3.1.2.R3 Post-processing semantic analysis
functionality.

TC3.1.2.NFR1 Real-time execution.

TC3.1.2.NFR2 Efficient semantic representation to
reduce required training data.

Component-level Use Cases

Name Actor type Actor (if SW/HW) Interaction

31

TC3.1.2_UC1
Produce high-level
semantics

HW/SW
component(s) TC3.1.2 itself

Provide multimodal sensor data (RGB/Lidar,
RGB/depth) to be analysed by Computer
Vision/Deep Learning mechanisms and produce
high-level observations/detections.

TC3.1.2_UC2
Semantic fusion of
detections

HW/SW
component(s) TC3.1.2 itself Detections deriving from TC.3.1.2_UC1 are

fused in a domain-specific semantic schema.

4.2.13 User Behaviour Monitoring

The user behavioural monitoring will be based on CPSoSaware’ s collaborative sensory multi-modal fusion
mechanism and will be based on algorithms for physiological and behavioural monitoring that will
facilitate the evaluation of cognitive load/situational awareness development of a smart sensing module
to allow inertial and optical sensor fusion, providing 6DoF pose estimation, thus dealing with occlusions
and drifts. The specificities of the algorithms will be defined by the system requirements and use cases.

Code: TC3.1.3 Tasks: T3.1 Partner: UPAT/ISI Type: Software TRL: 4

Architectural block:

CPS/CPHS layer

Architectural sub-blocks:

Monitoring Engine (ME)

State-of-the-Art / Innovation:

In literature, there are a lot of implementations trying to evaluate the driver's drowsiness, however, most of
them focus only on a specific measurement (direct or non-direct). We attend to improve the current state-of-
the-art situation using a fusion scheme, integrating different architectures, and providing more accurate results.

Functional requirements Non-functional requirements

TC3.1.3.R1 Pre-trained model of faces for the real-
time face recognition and face tracking via markers.

TC3.1.3.R2 Continuously recording of the driver's face.

TC3.1.3.R3 Optimization of algorithms for running in
real-time.

TC3.1.3.R4 Decision making based on the drowsiness
level, indicating the appropriate warning signs.

TC3.1.3.R5 Continuous monitoring and recording of
the driver's pulse rate from a wearable device.

TC3.1.3.NFR1 Computational efficiency.

TC3.1.3.NFR2 Security of the driver.

TC3.1.3.NFR3 Maximization of the situational
awareness.

TC3.1.3.NFR4 Robustness under different light
conditions.

Component-level Use Cases

Name Actor type Actor (if SW/HW) Interaction

TC3.1.3_UC1
Sense

HW/SW
component(s)

TC3.1.2 Deep
Multimodal Scene

Retrieve the pose/posture characteristics of
the user.

32

physiological
condition of user

Understanding
(TC3.1.2_UC2)

TC3.1.3_UC2
Sense cognitive
condition of user

HW/SW
component(s)

TC3.1.2 Deep
Multimodal Scene
Understanding
(TC3.1.2_UC2)

Retrieve the estimation of the user's cognitive
load/condition.

4.2.14 AI Acceleration

DCNNs achieve ground-breaking performance in a great variety of applications, including classification
tasks such as object recognition. However, DCNNs are computationally expensive, meaning that they
usually demand high-performance platforms for their implementation.
The goal is the study of DCNN acceleration / compression techniques for their effective implementation
in embedded platforms, lower the computational cost (number of operations, storage requirements).
With the least possible loss in accuracy. Specifically, our efforts are focused on pruning and sharing
techniques:

• Can achieve considerable acceleration without significant performance loss
• Can be applied to pre-trained DCNNs.

These are orthogonal and could potentially be combined.

Code: TC3.1.4 Tasks: T3.1 Partner: ISI Type: Software TRL: 3

Architectural block:

CPS/CPHS layer

Architectural sub-blocks:

Monitoring Engine

State-of-the-Art / Innovation:

Currently, simple vector quantization is employed. Here, we aim to employ novel vector quantization
techniques that considerably increase the acceleration / storage gain by exploiting the theory of dictionary
learning and sparse representations.

Functional requirements Non-functional requirements

TC3.1.4.R1 Pre-trained DCNN availiable: Original
DCNN model, pre-trained for the target application,
available in ONNX, or Matlab, or TF format.

TC3.1.4.R2 Data availability: Training/validation
dataset, for the target application, available for
retraining/finetuning purposes.

TC3.1.4.R3 Accelerated DCNN runtime functionality:
Availability of parameter-sharing enabled
convolutional layer implementation.

TC3.1.4.NFR1 Accelerated model accuracy within user
specifications.

TC3.1.4.NFR2 Minimize accelerated DCNN model
storage space.

TC3.1.4.NFR3 Minimize accelerated DCNN model
inference time execution.

Component-level Use Cases

33

Name Actor type Actor (if SW/HW) Interaction

TC3.1.4_UC1
Optimize AI
performance

CPS/CPSoS
Designer Requests the acceleration of given DCNNs to

perform on embedded platforms.

4.2.15 PoCL-accel

This is a generic OpenCL driver (for PoCL) to interface with custom devices (hardware accelerators) from
the OpenCL API.

Code: TC3.2.1 Tasks: T3.2 Partner: TAU Type: TRL: 3

Architectural block:

CPS/CPHS layer

Architectural sub-blocks:

OpenCL Description Execution (ODE)

State-of-the-Art / Innovation:

Previously different IPs needed largely new drivers, with pocl-accel + AlmaIF integrating to a common OpenCL
platform is made easier.

Functional requirements Non-functional requirements

TC3.2.1.R1 Must be able to support at least OpenCL
1.2 based command queues on the AlmaIF.

TC3.2.1.NFR1 Driver overhead less than 1%.

Component-level Use Cases

Name Actor type Actor (if SW/HW) Interaction

TC3.2.1_UC1
Deploy driver

CPS/CPSoS
Designer Deploys the POCL driver and integrates with

the OpenCL API.

4.2.16 Multimodal Localization API

This component will implement a software library (written mostly in Python Programming Language) of
novel techniques for multi-modal localization. Combination of LiDAR data and angle of arrival/departure
will be investigated for improved cooperative localization. The studied techniques will be implemented
via distributed approaches.

Code: TC3.3.1 Tasks: T3.1, T3.3 Partner: ISI Type: Software TRL: 3

Architectural block:

CPS/CPHS layer

Architectural sub-blocks:

Distributed, Cognitive and Cooperative Intelligence
(DCCI)

34

State-of-the-Art / Innovation:

Our aim is to study and develop both non-Bayesian and Bayesian cooperative localization and tracking methods.
Moreover, we will focus on distributed implementations that increase the robustness and safety, but also
converge to the centralized solution.

Functional requirements Non-functional requirements

TC3.3.1.R1 Trajectories of vehicles : CARLA simulator
will generate the trajectories of vehicles moving in a
city.

TC3.3.1.R2 Measurements availability: It is assumed
that absolute position and range measurements from
GPS and LIDAR sensor will always be available.

TC3.3.1.R3 Cooperation: Multi-modal fusion will be
performed in a collaborating manner, by representing
the VANET as a graph.

TC3.3.1.NFR1 Measurements degraded by Gaussian
noise.

TC3.3.1.NFR2 Exchange of measurements and
estimation of locations before the new GPS
measurement.

Component-level Use Cases

Name Actor type Actor (if SW/HW) Interaction

TC3.3.1_UC1
Perform
cooperative
localization

HW/SW
component(s)

TC3.1.2 Deep
Multimodal Scene
Understanding

(TC3.1.2_UC2)

Requests the production of localization data
from the combination of measurements (e.g.
GPS, LiDAR) for metrics like arrival/departure
and trajectories.

TC3.3.1_UC2
Submit localization
data for semantic
fusion

HW/SW
component(s)

TC3.1.2 Deep
Multimodal Scene
Understanding

(TC3.1.2_UC2)

The produced localization data are submitted
for semantic fusion in the scene understanding
module.

4.2.17 PathPlanning API

This component will implement a software library (written mostly in Python Programming Language) of
novel techniques for collaborative path planning.

Code: TC3.3.2 Tasks: T3.1, T3.3 Partner: ISI Type: Software TRL: 3

Architectural block:

CPS/CPHS layer

Architectural sub-blocks:

Distributed, Cognitive and Cooperative Intelligence
(DCCI)

State-of-the-Art / Innovation:

35

Currently collaborative path planning is focused on centralized solutions. We aim for the study and the
implementation of distributed techniques. This will increase the robustness, the safety, and the awareness
levels of the CPS platform.

Functional requirements Non-functional requirements

TC3.3.2.R1 Location Logging Mechanism: The
component should be able to collect logs of the node's
position.

TC3.3.2.R2 Control Error Logging Mechanism: The
component should be able to collect logs related to
the path planning control error.

TC3.3.2.R3 Execution Time: The component should be
able to collect the measured time between update of
sensor inputs till response to updated inputs for each
node.

TC3.3.2.R4 Connectivity graph: The component should
be able to store the nodes that are actively
collaborating to optimize the path planning control.

TC3.3.2.R5 Awareness level: The component should
be able to store the awareness level (SAL) metric.

TC3.3.2.NFR1 Minimize centralized control.

TC3.3.2.NFR2 Minimize collision risk.

TC3.3.2.NFR3 Maximize fault tolerance.

TC3.3.2.NFR4 Maximize situational awareness.

Component-level Use Cases

Name Actor type Actor (if SW/HW) Interaction

TC3.3.2_UC1
Measure and store
the position
measurements
fusing several
sensors

HW/SW
component(s)

TC3.3.1
Multimodal
Localization API

Provides position logs for a given node or set of
nodes.

TC3.3.2_UC2
Obtain the
required force
(torque) for each
vehicle to
perserve the path

HW/SW
component(s) TC3.3.2_UC2 itself Requests the generation of paths between

given nodes

TC3.3.2_UC3
Obtain the flow
topology
information

HW/SW
component(s)

TC3.3.2_UC3
Obtain the flow
topology
information

TC3.3.2 preserves a connectivity graph of the
active nodes to optimize the path planning.

36

4.2.18 XR Tools for Increasing Situational Awareness

AR-based enhancement tools to improve the human in the loop awareness. The tools should facilitate the
transfer of information (streams, reminders, or visual aids) to the user to improve focus on the current
task, remember other parallel or scheduled tasks, improve response time, avoid imminent dangers or
accident-related factors. More specifically, the AR methods will be used for increasing the situational
awareness of the drivers in the following applications:

• Pothole detection approaches.
• Rendering of occluded objects that will be identified by cooperative localization methods.

Code: TC3.4.1 Tasks: T3.4 Partner: UPAT Type: Software TRL: 3

Architectural block:

CPS/CPHS layer

Architectural sub-blocks:

Extended reality tools and interfaces

State-of-the-Art / Innovation:

State-of-the-art geometrical analysis approaches will be used, applied to point clouds, in order to extract
information from the captured scene (e.g., object detection). Consequently, this information will be visualized
using AR-based technology, providing also warning signs to the drivers. Additionally, coalition information of
other neighbouring vehicles will be used to highlight occluded or partially observed moving objects like other
vehicles or pedestrians.

Functional requirements Non-functional requirements

The AR situational awareness application should be
able to provide:

TC3.4.1.R1 Information streams regarding the task
underway improving focus,

TC3.4.1.R2 Personalized reminders regarding other
parallel or scheduled tasks significantly improving
response time,

TC3.4.1.R3 Notifications and visual aids regarding
imminent dangers or accident-related factors (e.g.,
pothole and obstacle detection),

TC3.4.1.R4 KPIs visualizing the effectiveness of the
CPSoS functionality,

TC3.4.1.R5 Cooperative situational awareness.
Visualization and use of coalition information provided
by other vehicles or interactive robots (e.g.,
highlighting of occluded vehicles and pedestrians).

TC3.4.1.NFR1 Computational efficiency (real-time).

TC3.4.1.NFR2 User-friendly interface.

TC3.4.1.NFR3 Reliability and robustness of the
provided aware sign.

TC3.4.1.NFR4 Improve situational awareness without
disturbing the user's attention.

TC3.4.1.NFR5 Provide only useful information based
on personalized user's preferences.

Component-level Use Cases

Name Actor type Actor (if SW/HW) Interaction

37

TC3.4.1_UC1 View
detected potholes End-User The end-user (driver) reviews detected

potholes using AR-enabled technologies.

TC3.4.1_UC2 View
occluded objects End-User

The end-user (driver) reviews rendered
occluded objects using AR-enabled
technologies.

4.2.19 CPS Layer Security Sensors/Agents

CPS layer Security sensors/agents that collect security related data and pre-process them before
transmitting them to the CPSoSaware SRMM at the system layer.

Code: TC3.5.1 Tasks: T3.5 Partner: USI/ISI/ATOS Type: Hardware & Software TRL: 4

Architectural block:

CPS/CPHS layer

Architectural sub-blocks:

Distributed, Cognitive and Cooperative Intelligence
(DCCI)

State-of-the-Art / Innovation:

Recent research is focused mainly on software agents deployed in cybersecurity devices. There are few works
that introduce a hardware-software co-design approach to increase the performance of the security agent by
using hardware acceleration of cryptography/security primitives.

Functional requirements Non-functional requirements

TC3.5.1.R1 Logging Mechanism: The component
should be able to collect logs of event that take place
in a CPS platform.

TC3.5.1.R2 Data Integrity: The component should be
able to ensure integrity of collected data that are
forwarded to the CPSoSaware Runtime Monitoring
System.

TC3.5.1.R3 Data Authenticity: The component should
be able to ensure authenticity of collected data that
are forwarded to the CPSoSaware Runtime Monitoring
System.

TC3.5.1.R4 Detectability: The component should be
able to detect simple anomalous events in the CPS
system (e.g. related to false data injection, security
attacks on the device and CPS network issues).

TC3.5.1.R5 Secure channel communication: The
component should be able to transmit in a secure and
trusted way the collected logs to the CPSoSaware
Runtime monitoring system. This can be managed
through end to end secure communication.

TC3.5.1.NFR1 Efficiency (response time).

TC3.5.1.NFR2 Efficiency (constrained memory and chip
covered area resources).

TC3.5.1.NFR3 Flexibility so that sensor components can
be updated dynamically.

TC3.5.1.NFR4 Interoperability so that sensors can be
used in various CPSs and both pilots.

TC3.5.1.NFR5 Trusted computation following security
by design approach and use of trusted execution
environments.

38

Component-level Use Cases

Name Actor type Actor (if SW/HW) Interaction

TC3.5.1_UC1
Collect security
data

HW/SW
component(s)

Security sensors
and agents

Security agents/sensors provide security-
related data.

TC3.5.1_UC2 Pre-
process and
normalize security
data

 TC3.5.1 pre-processes collected security data
and normalizes format.

TC3.5.1_UC3
Transmit security
data

HW/SW
component(s)

TC4.3.1 Security
Runtime
Monitoring

TC3.5.1 provides the pre-processed security
data to the Security Runtime Monitoring
(SRMM).

4.2.20 TCE (openasip.org) Soft Cores

Customized processors designed using TTA-Based Co-design Environment (TCE), an open source
application-specific instruction set toolset based on the transport-triggered architecture (TTA). Various
hardening features can be added via replication of functionality and special instructions.

Code: TC3.6.1 Tasks: T3.6 Partner: TAU Type: Hardware & Software TRL: 3-5

Architectural block:

CPSoS system layer

Architectural sub-blocks:

HW/SW Component Library

State-of-the-Art / Innovation:

Other ASIP tools are commercial / closed source and utilize traditional operation-triggered architectures, while
TCE has an open source repository available, and the used TTA template provably improves also soft core usage.
The tools have various parts which are under development and in different TRLs.

Functional requirements Non-functional requirements

TC3.6.1.R1 Programmable co-processor for cases
where hardware customization is useful, but runtime
programmability is needed.

TC3.6.1.R2 Ability to execute at least two different
tasks defined by switching the software binary only.

TC3.6.1.NFR1 Performance requirements are
task/application specific. Overall, acceleration or
improved energy-efficiency over similar software on a
general-purpose processor is required to justify an
ASIP.

Component-level Use Cases

Name Actor type Actor (if SW/HW) Interaction

TC3.6.1_UC1
Customize

CPS/CPSoS
Designer Customizes processor using TCE

39

processor
architecture

TC3.6.1_UC2
Evaluate
customized
processor

CPS/CPSoS
Designer Evaluates customized processor statistics

4.2.21 OpenCL Wrapper for Hardware IP Cores

OpenCL kernel description interface to associate Hardware IP cores with the OpenCL models.

Code: TC4.1.1 Tasks: T4.1 Partner: TAU Type: Hardware & Software TRL: 3

Architectural block:

CPSoS system layer

Architectural sub-blocks:

HW/SW Component Library

State-of-the-Art / Innovation:

Previously different IPs needed largely new drivers, with pocl-accel and AlmaIF integrating to a common
OpenCL platform is made easier.

Functional requirements Non-functional requirements

TC4.1.1.R1 Ability to easily add IPs and co-processors
to OpenCL platforms that are orchestrated from a
single OpenCL runtime.

TC4.1.1.NFR1 The implementation overhead of the
wrapper should be less than 1% of the wrapped
design.

Component-level Use Cases

Name Actor type Actor (if SW/HW) Interaction

TC4.1.1_UC1
Associate HW IP
cores to OpenCL
models

CPS/CPSoS
Designer
HW/SW
component(s)

TC2.3.1 ML
Hardware
Accelerator IP
Cores

CPS/CPSoS designer associates OpenCL models
to HW IP cores from TC2.3.1

4.2.22 HW/SW profiling and analysis based on Vitis Tools

Profiling for a highly heterogeneous platform consisting of multicore ARM processor, ASIP processors as
well as FPGA fixed logic IP. FPGA logic is a “morphable” computation resource without predefined
computational capabilities. All SW nodes will be handled by PoCL, enabling dynamic remapping and re-
scheduling opportunities.

Code: TC4.1.2 Tasks: T4.1 Partner: UoP Type: Hardware and Software TRL: 5

Architectural block:

CPSoS system layer

Architectural sub-blocks:

Modelling and Redesign Engine (MRE)

40

State-of-the-Art / Innovation:

Xilinx profiling framework, based on Vitis, taking as input a set of profiling parameters extracted by LLVM
framework by implementing a new set of LLVM API calls.

Functional requirements Non-functional requirements

TC4.1.2.R1 HLS based SW to HW Transformation
(TC5.1.1.R1)

TC4.1.2.R2 Commissioning: The component should be
able to collect hardware bitstreams IP Cores and
download them on the FPGA fabric of a Multiprocessor
System on Chip FPGA board. (TC4.6.1.R1)

TC4.1.2.R3 Reconfigurability: The components should
be able to reconfigure the commissioned hardware IP
Cores on the FPGA fabric of a (TC4.6.1.R2)

TC4.1.2.R4 Multiprocessor System on Chip FPGA board
and replace existing hardware IP Cores. (TC4.6.1.R3)

TC4.1.2.R5 Removal: The component should be able to
remove existing hardware IP Cores in the FPGA fabric
of a Multiprocessor System on Chip (MPSoS) FPGA
board. (TC4.6.1.R4)

TC4.1.2.R6 Accessibility: The component should be
able to communicate with the model based design
mechanism of the CPSoSaware layer in order to deploy
hardware IP Cores in the MPSoC board. (TC4.6.1.R5)

TC4.1.2.R7 IP Core Software Support: The component
should be able to deploy appropriate software driver
components on the runtime system (embedded OS or
bare metal API) been executed on a MPSoC FPGA board
so that hardware IP Cores are accessible. Support for
POCL tool could be offered. (TC4.6.1.R6)

TC4.1.2.R8 Accelerate DNN inference in comparison to
software running in ARM. (TC2.3.1.R1)

TC4.1.2.NFR1 Reliability and robustness of the
suggested assembly steps. (TC5.3.1.NFR3)

TC4.1.2.NFR2 Programmable co-processor for cases
where hardware. (TC3.6.1.R1) customization is useful,
but runtime programmability is needed.

TC4.1.2.NFR3 Performance requirements are
task/application specific. Overall, acceleration or
improved energy-efficiency over similar software on a
general-purpose processor is required to justify an
ASIP. (TC3.6.1.NFR1)

Component-level Use Cases

Name Actor type Actor (if SW/HW) Interaction

TC4.1.2_UC1
Commission HW
component at the
System layer
(TC4.6.1_UC1)

CPS/CPSoS
Designer Input: LLVM generated statistics

Output: Library of SW/HW components

TC4.1.2_UC2
Commission HW
component at the

CPS/CPSoS
Designer Input: LLVM generated statistics

Output: Library of SW/HW components

41

CPS layer
(TC4.6.1_UC2)

4.2.23 Architecture Optimization

This component aims to provide all necessary optimizations in order to reconfigure and redesign the
System’s CPSs/CPHSs so as to holistically match the systemic design and operational goals/parameters
achieving reliability, robustness, responsiveness, CPS/CPHS criticality, energy efficiency, and
security/trust.

Code: TC4.1.3 Tasks: T4.1 Partner: IBM Type: Software TRL: 3

Architectural block:

CPSoS system layer

Architectural sub-blocks:

Modelling and Redesign Engine (MRE)

State-of-the-Art / Innovation:

IBM Architecture Optimization Workbench (AOW)

Functional requirements Non-functional requirements

TC4.1.3.R1 Input. The component must handle input in
a mathematical optimization format, providing the
necessary abstractions to model (with decision
variables) CPSs/CPHSs including both hardware and
software components and their connections.

TC4.1.3.R2 Objective. The component should be
capable of optimizing a variety of objective functions.
This does not include simultaneous multiple objectives
(Pareto front).

TC4.1.3.R3 Constraints. The component must be able
to handle connection, application, and resource
constraints.

TC4.1.4.R4 Output. The component should produce as
output a hardware-software partitioning that is
optimal according to the specified mathematical
optimization problem.

TC4.1.3.NFR1 Efficiency (response time)

TC4.1.3.NFR2 Efficiency (optimality)

TC4.1.3.NFR3 Feasibility of solution

Component-level Use Cases

Name Actor type Actor (if SW/HW) Interaction

TC4.1.3_UC1
Schedule Software
tasks on Hardware

CPS/CPSoS
Designer

CPS/CPSoS designer creates policies for optimal
partitioning of software tasks on hardware
components of CPSs/CPHSs

42

4.2.24 Intra-Communication Manager

On one hand mechanisms to supervise a running network configuration in a real deployment. The metrics
that reflect the application requirements will be monitored to provide feedback on whether the
application requirements are met. Feedback will be extracted as a structured file by the end of each
experiment on real deployments. The extracted feedback file will be used for further optimization during
the simulation time. On the other hand, mechanisms allowing the reception of new network interface
firmware or/and configuration file and application of these on the embedded platform.

Code: TC4.2.1 Tasks: T4.2 Partner: UoP Type: Software TRL: 4

Architectural block:

CPS/CPHS layer

Architectural sub-blocks:

CPSoSaware Intra-CPS Communication Layer

State-of-the-Art / Innovation:

Performance evaluation during runtime. Reconfiguration of network parameters during runtime.

Functional requirements Non-functional requirements

TC4.2.1.R1 SW agents running on the HW platform
monitor the network performance under the current
network configuration for specific application
scenario.

TC4.2.1.R2 The performance outcome is processed in
order to evaluate whether the application
requirements are met.

TC4.2.1.R3 SW agent running on the HW is responsible
to receive new network configuration and/or network
interface firmware to apply on the device.

TC4.2.1.NFR1 The device should be able to recover
from failing network firmware/configuration update.

TC4.2.1.NFR2 SW agent should be able to verify the
integrity of the received payloads.

TC4.2.1.NFR3 Versioning of the applied configurations
should be supported.

TC4.2.1.NFR4 Authentication/Authorization for
receiving configuration updates.

Component-level Use Cases

Name Actor type Actor (if SW/HW) Interaction

TC4.2.1_UC1
Define network
metrics

Analyst Defines the network-related metrics that
correspond to the application requirements.

TC4.2.1_UC2
Export feedback
file

Analyst Generates a structured file of metrics/values
after an experiment.

UC4.2.1_UC3
Apply new
network interface

CPS/CPSoS
Designer Feeds TC4.2.1 with new network interface

firmware and/or config file.

43

4.2.25 Security Runtime Monitoring

The Security Runtime Monitoring will be based on the ATOS XL-SIEM which will be receiving events from
security sensors deployed in the infrastructure, normalizing them and using them to generate alerts based
on a set of correlation rules.

Code: TC4.3.1 Tasks: T4.3 Partner: ATOS Type: Software TRL: 7

Architectural block:

CPSoS system layer

Architectural sub-blocks:

Security Runtime Monitoring and Management
(SRMM)

State-of-the-Art / Innovation:

Innovation 1 - collect and process security events from new data sources (CPS level, Communication layer)

Innovation 2 - detect new threats and attacks from the specific landscape considered in CPSoS: automotive and
manufacturing.

Innovation 3 - adapt to the HW/SW and deployment requirements of the CPSoS architecture.

Functional requirements Non-functional requirements

TC4.3.1.R1 Input: The component must receive
normalized security events through TCP/41000 from
agents/sensors deployed remotely, in the
infrastructure that is under surveillance. Events
comply with a predefined JSON format.

TC4.3.1.R2 Configuration: The component should be
configured using the component's graphical
dashboard, to define the security monitoring
infrastructure in use (topology of sensors/agents
deployed and active), the security detection rules and
the correlation directives.

TC4.3.1.R3 Events Processing: The component must
process security events received as input, correlate
them using the security detection rules configured,
and generate security alarms as ouput, as defined in
the correlation directives configured.

TC4.3.1.R4 Output: The component should produce as
output security alarms. Alarms comply with a
predefined JSON format. Alarms can be configured to
be persisted in a DB, logged into a file, transmitted to
a third-party component (using a middleware such as
Message Queue/Broker) and displayed in the SRMM
graphical dashboard.

TC4.3.1.R5 Cross-correlation: Security alarms
produced as output by the SRMM can be configured
to be input into the SRMM correlation engine, for
cross-correlation processes.

TC4.3.1.NFR1 Scalability: of the SRMM correlation
engine and data collection module

TC4.3.1.NFR2 High-performance: of the SRMM
correlation engine and the data persistence layer

TC4.3.1.NFR3 Integrity: of the security events
transmitted from sensors/agents to the SRMM
component, and of the security alarms generated as
output by the SRMM

TC4.3.1.NFR4 Confidentiality: of the security events
transmitted from sensors/agents to the SRMM
component, and of the security alarms generated as
output by the SRMM

TC4.3.1.NFR5 Accountability: of the security events
transmitted from sensors/agents to the SRMM
component, of the correlation process and of the
security alarms generated as output by the SRMM

44

Component-level Use Cases

Name Actor type Actor (if SW/HW) Interaction

TC4.3.1_UC1
Configure security
monitoring and
detection rules

Analyst
Defines the topology of the infrastructure to be
monitored and configures the security
detection rules.

TC4.3.1_UC2
Receive security
events

HW/SW
component(s)

Security sensors
and agents

Security agents/sensors provide security-
related events.

TC4.3.1_UC3
Analyse and
Correlate security
events

HW/SW
component(s) TC4.3.1 correlates security events according to

the configured security rules.

TC4.3.1_UC4
Generate alerts

HW/SW
component(s) /
Analyst

RabbitMQ queue Transmits security alerts in JSON format and
displays alerts in the Graphical Dashboard.

4.2.26 V2X Simulator

First implementation of V2X simulator is a simulator based on OMNeT++, Vanetza, and SUMO modules. It
implements IEEE 802.11p and LTE C-V2X Mode 4. It can represent realistic scenarios based on
OpenStreetMaps.

Code: TC4.4.1 Tasks: T4.4 Partner: i2CAT/ROBOTEC Type: Software TRL: 4

Architectural block:

Simulation and training

Architectural sub-blocks:

-

Functional requirements Non-functional requirements

TC4.4.1.R1 ROS/ROS2 interface.

TC4.4.1.R2 V2X representation of state in AV
simulator.

TC4.4.1.NFR1 Possibility of running in real time.

TC4.4.1.NFR2 Modular architecture integrated in
simulation framework.

Component-level Use Cases

Name Actor type Actor (if SW/HW) Interaction

TC4.4.1_UC1
Receive data from
central simulator

HW/SW
component(s)

TC4.4.3 AV
Simulator

Provide scene configuration, vehicles' data
(location, velocity, etc.)

45

TC4.4.1_UC2
Perform
simulation

 TC4.4.1 performs simulation

TC4.4.1_UC3
Generate traces

HW/SW
component(s) Perception, location & velocity data

Another module for V2X simulation is developed based on OMNeT++ network simulator, but without
using SUMO. The communication with AV Simulator will be done using ROS/ROS2 interface directly.
Thanks to such approach, V2X module can work with any AV Simulator with ROS/ROS2 communication
implemented.

Code: TC4.4.1 Tasks: T4.4 Partner: ROBOTEC Type: Software TRL: 4

Architectural block:

Simulation and training

Architectural sub-blocks:

-

State-of-the-Art / Innovation:

Developed simulation module will be compatible with any AV simulator using ROS/ROS2 communication.
Current solutions (OMNeT++) cannot be directly integrated with AV Simulators, without intermediate modules.

Functional requirements Non-functional requirements

TC4.4.1.R1 ROS/ROS2 interface.

TC4.4.1.R2 V2X representation of state in AV
simulator.

TC4.4.1.NFR1 Possibility of running in real time.

TC4.4.1.NFR2 Modular architecture integrated in
simulation framework.

Component-level Use Cases

Name Actor type Actor (if SW/HW) Interaction

TC4.4.1_UC1
Working as a
submodule of
central simulator

HW/SW
component(s)

TC4.4.3 AV
Simulator

Getting scene configuration, vehicles' data
(location, velocity, etc.) from AV simulator,
sending back V2X messages received by each
trafic agent

4.2.27 Manufacturing Environment Simulation

This component is a simulator based on one of the available solutions (Gazebo, Nvidia Isaac) with
additional CPSOSaware related modules enabling advanced simulation of all scenarios and integration
with other simulations (factory sensors, human behaviour modelling, cybersecurity).

Code: TC4.4.2 Tasks: T4.4 Partner: ROBOTEC Type: Software TRL: 4

Architectural block:

Simulation and training

Architectural sub-blocks:

-

46

Functional requirements Non-functional requirements

TC4.4.2.R1 Machine learning support.

TC4.4.2.R2 Possibility of modelling additional
elements of use case scenarios: humans, light curtain,
safety eye, etc.

TC4.4.2.R3 Available models of robotic arms used in
CRF factory.

TC4.4.2.R4 Integration with middleware: Simulation
solution should offer integration with state-of-the-art
robotics middleware (e.g. ROS and ROS2).

TC4.4.2.R5 User control: Simulation should allow users
to control all critical aspects in the simulation through
dedicated API (e.g. agents behaviour or sensors).

TC4.4.2.NFR1 Fast execution - Software should offer a
fast execution simulation for which graphics are not
required.

TC4.4.2.NFR2 Diagnostic and Error Handling -
Simulation should offer diagnostic and error handling

TC4.4.2.NFR3 Determinism - Simulation should ensure
determinism.

TC4.4.2.NFR4 Modular System Architecture -
Simulation should have modular system architecture.

Component-level Use Cases

Name Actor type Actor (if SW/HW) Interaction

TC4.4.2_UC1
Receive input End-User Provides vehicle models, control algorithms,

predefined control scenarios

TC4.4.2_UC2 Run
simulation TC4.4.2 performs simulation

TC4.4.2_UC3
Generate training
data

End-User TC4.4.2 generates datasets for perception &
reports of scenario validation

4.2.28 AV Simulation

This is a simulator based on one of the available open-source solutions with additional CPSoSaware-
related modules, enabling advanced simulation of all scenarios and integration with other simulations
(V2X, HIL, cybersecurity, DMS, etc.). Simulation of sensors, cyberattacks, communication with vehicles and
infrastructure.

Code: TC4.4.3 Tasks: T4.4 Partner: ROBOTEC Type: Software TRL: 4

Architectural block:

Simulation and training

Architectural sub-blocks:

-

State-of-the-Art / Innovation:

AV Simulator will be used for validation all automotive related use cases. The AV simulator will be used as
central module for related scenarios simulations. Important requirements are possible simulation of sensors,
control of multiple agents and possible integration with other simulators.

47

Functional requirements Non-functional requirements

TC4.4.3.R1 Machine learning support for perception
algorithms.

TC4.4.3.R2 User control: Simulation should allow users
to control all critical aspects in the simulation through
dedicated API (e.g. agents behaviour or sensors).

TC4.4.3.R3 Integration with middleware: Simulation
solution should offer integration with state-of-the-art
robotics middleware (e.g. ROS and ROS2).

TC4.4.3.NFR1 Simple way of defining test scenarios.

TC4.4.3.NFR2 Scalability to multiple agent control -
Simulation should provide multiple clients that can
control different actors.

TC4.4.3.NFR3 Scalability to cloud services - Simulation
should be able to run on scalable cloud services to
run. multiple simulation scenarios (e.g. Google Cloud,
Microsoft Azure or other).

TC4.4.3.NFR4 Fast execution: Software should offer a
fast execution simulation for which graphics are not
required.

TC4.4.3.NFR5 Diagnostic and Error Handling -
Simulation should offer diagnostic and error handling.

TC4.4.3.NFR6 Determinism - Simulation should ensure
determinism.

TC4.4.3.NFR7 Modular System Architecture -
Simulation should have modular system architecture.

Component-level Use Cases

Name Actor type Actor (if SW/HW) Interaction

TC4.4.3_UC1
Receive input End-User Provide human behaviour models, predefined

control scenarios

TC4.4.3_UC2 Run
simulation TC4.4.3 performs simulation

TC4.4.3_UC3
Generate training
data

End-User TC4.4.3 generates datasets for perception &
reports of scenario validation

4.2.29 Commissioning of Hardware Components in CPSs

The Developed Hardware components after HW/SW partitioning will need to be deployed in the CPS. We
focus on the dedicated HW accelerator components designed in other tasks and we aim at structuring the
deployment/commissioning mechanism in the CPS SoC FPGA Fabric. In T4.6 we will focus on the
commissioning mechanism from the system layer perspective while in task T5.2 we will focus on the
commissioning mechanism infrastructure (support) at the CPS layer (in each CPS).

Code: TC4.6.1 Tasks: T4.6, T5.2 Partner: UoP/IBM Type: Software TRL: 4

Architectural block:

CPSoS system layer

Architectural sub-blocks:

48

CPS Commissioning and CPS to System Inter-
Communication Layer components

State-of-the-Art / Innovation:

To the best of our knowledge there is poor work in automated commissioning processes for cyber physical
systems that consider software and hardware components as well.

Functional requirements Non-functional requirements

TC4.6.1.R1 Commissioning: The component should be
able to collect hardware bitstreams IP Cores and
download them on the FPGA fabric of a
Multiprocessor System on Chip FPGA board.

TC4.6.1.R2 Reconfigurability: The components should
be able to reconfigure the commissioned hardware IP
Cores on the FPGA fabric of a TC4.6.1.R3
Multiprocessor System on Chip FPGA board and
replace existing hardware IP Cores.

TC4.6.1.R4 Removal: The component should be able
to remove existing hardware IP Cores in the FPGA
fabric of a Multiprocessor System on Chip (MPSoS)
FPGA board.

TC4.6.1.R5 Accessibility: The component should be
able to communicate with the model-based design
mechanism of the CPSoSaware layer in order to
deploy hardware IP Cores in the MPSoC board.

TC4.6.1.R6 IP Core Software Support: The component
should be able to deploy appropriate software driver
components on the runtime system (embedded OS or
bare metal API) been executed on a MPSoC FPGA
board so that hardware IP Cores are accessible.
Support for PoCL tool could be offered.

TC4.6.1.NFR1 The component should be able to
validate that connectivity exists and recover from
possible network failures.

TC4.6.1.NFR2 The component should be able to
handle efficiently the configuration updates and
resolve any possible dependencies.

TC4.6.1.NFR3 The component should be able to
provide integrity validation method in both ends (e.g.
hashes of the transferred payloads).

TC4.6.1.NFR4 The component should be aware of the
commissioning process’ status and handle failures
(e.g. rollback to previous versions).

Component-level Use Cases

Name Actor type Actor (if SW/HW) Interaction

TC4.6.1_UC1
Commission HW
component at the
System layer

CPS/CPSoS
Designer

Input: HW accelerator bitstreams to be
deployed
Output: CPS deployed HW executable

TC4.6.1_UC2
Commission HW
component at the
CPS layer

CPS/CPSoS
Designer

"Input: HW accelerator bitstreams to be
deployed
Output: CPS deployed HW executable"

49

4.2.30 HLS based SW to HW Transformation

HLS based synthesized HW components with PoCL compatible interfaces.

Code: TC5.1.1 Tasks: T5.1 Partner: UoP/ISI Type: Hardware & Software TRL: 4

Architectural block:

CPSoS system layer

Architectural sub-blocks:

Modelling and Redesign Engine (MRE)

State-of-the-Art / Innovation:

HLS based synthesized HW components with PoCL compatible interfaces.

Functional requirements Non-functional requirements

TC5.1.1.R1 Profiling (TC4.1.2.R1)

TC5.1.1.R2 Commissioning of Hardware Components in
CPSs (TC4.6.1.R1)

TC5.1.1.R3 Reconfigurability (TC4.6.1.R2)

TC5.1.1.R4 IP Core Software Support (TC4.6.1.R6)

TC5.1.1.R5 ML Hardware Accelerator IP Cores (TC2.3.1)

TC5.1.1.R6 Accelerate DNN inference in comparison to
software running in ARM. (TC2.3.1.R1)

TC5.1.1.R7 Provide access to all OpenCL-supported
devices in a network distributed platform from a single
host application. (TC2.2.2.R1)

TC5.1.1.NFR1 Development of HW-SW Library with
reliable Components. (TC3.6.1.NFR1)

TC5.1.1.NFR2 Performance requirements are
task/application specific. Overall, acceleration or
improved energy-efficiency over similar software on a
general-purpose processor is required to justify an
ASIC. (TC3.6.1.NFR1)

Component-level Use Cases

Name Actor type Actor (if SW/HW) Interaction

 TC5.1.1_UC1
Commission HW
component at the
System layer
(TC4.6.1_UC1)

CPS/CPSoS
Designer

Input: HW accelerator bitstreams to be
deployed
Output: CPS deployed HW executable

TC5.1.1_UC2
Commission HW
component at the
CPS layer
(TC4.6.1_UC2)

CPS/CPSoS
Designer

"Input: HW accelerator bitstreams to be
deployed
Output: CPS deployed HW executable"

4.2.31 Extended Reality lifelong learning tools/Interfaces for integrated CPSoS

An AR-based CPHS user training toolkit will be developed so as to help the user adapt to changes in the
environment and the dynamic CPSoS, whether these may concern a new machine that is added in the
system or some new task process. Users often encounter strong outer constraints such as time or

50

occupation, thus more immersive technologies aim to better exploit the uniqueness of AR and designing
more effective virtual environments to improve the learning process. Virtual training scenarios will cover
a broad range of user-desired activities.

Code: TC5.3.1 Tasks: T5.3 Partner: UPAT Type: Software TRL: 1

Architectural block:

CPS/CPHS layer

Architectural sub-blocks:

Extended reality tools and interfaces

State-of-the-Art / Innovation:

AR technologies will be used to support on-site learning by giving contextually relevant and personally adapted
guidance to the user. On-site learning has a close connection to knowledge sharing as learning can be supported
both by formal guidance and knowledge shared by peers. The AR tools and virtual workplace simulations make
guidance lively and engaging. AR-based life-long learning tools.

Functional requirements Non-functional requirements

The AR technology, as a learning tool, should be able
to:

TC5.3.1.R1 Involve gamification of learning which
makes the process fun and interactive.

TC5.3.1.R2 Provide visual cues in a distraction-free
environment which helps the users to better
understand the concepts.

TC5.3.1.R3 The technologies come with intelligent
learning content and provide real-time responses.

TC5.3.1.R4 The trainee can easily accomplish the
mapping between the training and the real task and is
also able to access additional training material or
information about the virtual objects.

TC5.3.1.R5 AR can support assembly tasks in hybrid
human-machine manufacturing lines, improving
efficiency and ergonomics, and reduce costs in
industrial environments that require manual assembly
operations.

TC5.3.1.NFR1 Computational efficiency (real-time).

TC5.3.1.NFR2 User-friendly interface.

TC5.3.1.NFR3 Reliability and robustness of the
suggested assembly steps.

TC5.3.1.NFR4 Improve the learning procedure without
disturbing the user's attention.

TC5.3.1.NFR5 Provide only such type of help and
instructions based on personalized user's preferences.

Component-level Use Cases

Name Actor type Actor (if SW/HW) Interaction

TC5.3.1_UC1
Execute on-site
learning scenario

End-user Eye gaze, gestures, physiological signals etc.

TC5.3.1_UC2
Execute off-site
learning scenario

End-user Eye gaze, gestures, physiological signals etc.

51

TC5.3.1_UC3 Build
Personal training
plan

End-user Personalized information related to user.

TC5.3.1_UC4
Execute
collaborative
learning scenario

End-user Collaborative information from instructor
and/or other colleagues.

TC5.3.1_UC5
Generate
recommendations

Analyst / End-user Retrieve recommendations based on trainee
performance.

52

5 CPSoSaware System Architecture – Preliminary Version

The analysis of the collected information, as presented in Section 4, along with architecture descriptions
deriving from the DoA (Figure 3), has led to the identification and refinement of architectural blocks and
sub-blocks for the efficient conceptualization of the overall architecture and the classification of technical
components into interconnected, sensible and coherent groups. At this design stage, technical
components are treated as black boxes, meaning that their internal functionality and architecture are not
yet taken into consideration. However, the progress in the definition of pilot use cases, technical
requirements, and system-level use cases will feed the architecture designing process at the next stages
of the project.

Figure 3. CPSoSaware proposed architecture

This section shortly presents the defined architectural blocks and a preliminary version of the architecture
that includes the - so far - identified interconnections.

53

5.1 Architectural Blocks

5.1.1 CPSoS System Layer

This layer serves the modelling, configuration, redesign, evaluation, optimization, commission,
communication, and orchestration of CPS/CPHs in the CPSoS of discourse. Included sub-blocks are:

• Security Runtime Monitoring and Management (SRMM): This block contains components
aimed at providing security awareness to CPSoSaware. By deploying anomaly detection and
threat assessment mechanisms, it will provide information for mitigation strategies and feed the
CSAIE.

• Cognitive System AI Engine (CSAIE): This block intends to add a layer of cognitive control over
the system KPIs. It periodically collects and analyzes data from SRMM and ME, and it provides
input to the MRE regarding the collaborative decentralization strategy to be followed in the
various CPSs.

• Modelling and Redesign Engine (MRE): MRE incorporates system components that enable the
modelling, optimization, and redesign of the CPSoS. It allows the definition of models and meta-
models considering system requirement KPIs. With the use of OpenCL, the MRE components
manage the implementation of the CPSoSaware Model, Optimize, Design, Deploy (MODD)
approach.

• System Inter-Communication Layer (SICL): This layer undertakes the responsibility to deploy
communication technologies between the CPSoS and the CPSs.

• CPS Commissioning and CPS to System Inter-Communication Layer: This block is responsible for
commissioning resources and strategies to the variety of participating CPSs.

5.1.2 CPS/CPHS Layer

This block provides the mechanisms for the preparation and deployment of CPS/CPHS to programmable
SoC computing devices, such GPUs and FPGAs. It contains the following architectural sub-blocks:

• OpenCL Description Execution (ODE): With the use of Portable Computing Language (PoCL 4) and
its distributed extension PoCL-Remote, ODE manages the deployment of OpenCL configurations
to FPGAs at the CPS and CPSoS level.

• Distributed, Cognitive and Cooperative Intelligence (DCCI): This block provides a multitasking
mechanism to be shared between CPSs without the involvement of the CPSoS System Layer after
deployment. Thus, the participating CPSs will collectively present reliability and fault tolerance
towards the fulfilment of system-wide objectives.

• CPSoSaware Intra-CPS Communication Layer (CICL): CICL is aimed at establishing efficient and
reliable communications between a) CPSs and their respective sensors, and b) CPSs with other
CPSs in the system, in accordance with the DCCI objectives.

• Extended reality tools and interfaces (XRT): This block will provide CPS users with appropriate
interfaces and tools for high engagement, optimal experience, situational awareness, and
reduced reaction times.

4 http://portablecl.org/

54

• Monitoring Engine (ME): The CPS Monitoring Engine collects information regarding the status of
CPSs in order to extract appropriate knowledge (e.g. features, decisions). The collected
information includes input from involved humans and the cyber-physical environments of CPSs.

5.1.3 Simulation and Training Layer

In a nutshell, this layer serves and orchestrates the simulation of the various CPS/CPHS and their
communications, generating training data required for effective optimizations.

5.2 Preliminary Architecture Block Diagram

For the visualization of architectural blocks, we used PlantUML5, which provides a thoroughly documented
domain-specific language (DSL) for the description and automatic generation of UML diagrams. More
specifically, we utilized a free web-based PlantUML editor named PlantText6 to define the PlantUML code.
This section presents the generated UML block diagrams that illustrate the preliminary version of the
CPSoSaware architecture.

Figure 4. UML diagram - Architectural blocks

Figure 4 displays the top-level architectural blocks of CPSoSaware. The UML source within the PlantText
editor can be reviewed via this link. Consequently, the sub-blocks were added to the appropriate layers,
resulting in the diagram of Figure 5. The UML source of the latter - and an image of higher quality - can be
found in this link.

Figure 5. UML diagram - Architectural blocks and sub-blocks

5 https://plantuml.com/

6 https://www.planttext.com/

55

Finally, we corresponded the technical components to the appropriate blocks and sub-blocks by utilizing
information collected via the component specification templates. By consulting the technology experts
and the DoA, a preliminary set of connections (arrows) among blocks and components has also been
identified. The resulted UML diagram, shown in Figure 6, can also be found in high resolution via this link.

Figure 6. UML diagram - Architectural blocks and sub-blocks with technical components

The next steps in the CPSoSaware architecture include the elicitation of all component interconnections
and the definition of interfaces for their communications, in order to facilitate the precise system
development and deployment.

56

6 Conclusions and Next Steps

This deliverable initially introduced the background notions of requirements engineering along with the
established requirement elicitation methodologies, and then focused on presenting the outputs from the
first phase of Task 1.3. The key outcome from our work on this task during the first year of the project was
the CPSoSaware Technical Specification Elicitation Framework presented in Chapter 3. Based on a
combination of requiring technical partners to fill a circulated requirement specification template,
analyzing the existing documentation (DoA), and consulting with the involved stakeholders, we produced
a uniform information-rich reference document (Chapter 4). This document contains technical
component specifications, including the respective functional and non-functional requirements, and is a
living document in the sense that it will constantly be accessible by all involved stakeholders and will be
frequently reiterated throughout the project lifetime. The overarching aim is to reach a precise
architecture design for the CPSoSaware system. An additional key outcome from this work is an overview
of the defined architectural blocks and a preliminary version of the system architecture, which were also
presented in this document (Chapter 5).

Relying on the requirements presented in Chapter 4 as the foundation, the next steps in this thread of
work involve working towards clearly specifying the interfaces between the functional modules and
components of the CPSoSaware framework. The key outcome will be a detailed system architecture,
provided in a format that can be parsed by the CPSoSaware framework.

57

References

Bruegge, B., & Dutoit, A. (2009). Object-Oriented Software Engineering: Using UML, Patterns and Java
(Third Edition). Prentice Hall. ISBN 978-0136061250.

Clements, P., Garlan, D., Little, R., Nord, R., & Stafford, J. (2003, May). Documenting Software
Architectures: Views and Beyond. In Proceedings of 25th Int. Conf. on Software Engineering, 2003. (pp.
740-741). IEEE.

Eid, M. (2015). Requirement Gathering Methods. Available at: https://bit.ly/38uuXYe, last accessed:
Nov’20.

Liao, L. (2002). From Requirements to Architecture: The State of the Art in Software Architecture Design.
Department of Computer Science and Engineering, University of Washington, (pp. 1-13).

Nuseibeh, B., & Easterbrook, S. (2000, May). Requirements Engineering: A Roadmap. In Proceedings of
the Conference on the Future of Software Engineering (pp. 35-46).

Perry, D. E., & Wolf, A. L. (1992). Foundations for the Study of Software Architecture. ACM SIGSOFT
Software Engineering Notes, 17(4):40. doi:10.1145/141874.141884.

Regnell, B., Andersson, M., & Bergstrand, J. (1996, March). A Hierarchical Use Case Model with Graphical
Representation. In Proceedings IEEE Symposium and Workshop on Engineering of Computer-Based
Systems (pp. 270-277). IEEE.

Shekaran, C., Garlan, D., Jackson, M., Mead, N. R., Potts, C., & Reubenstein, H. B. (1994, April). The Role
of Software Architecture in Requirements Engineering. In Proceedings of IEEE Int. Conf. on Requirements
Engineering (pp. 239-245). IEEE.

58

Appendix A: CPSoSaware Component Specification Template

Task name Name of the Task X.X

Task Leader Name of the Task X.X leader

Component Name Name of component/module

Type (Software/Hardware) Pls. Indicate if it is a software or hardware

Short Description
Pls. provide a general description of your
software/hardware infrastructure components/modules
that will be used.

Methodologies that will be used Pls. indicate the methodologies that will be used

User-defined scenarios (no technical) Pls. provide the use case-based scenarios which are
requested for the system requirements

Map to project objectives e.g. O.1 …

Relevant Use Cases e.g. Pilot/Use Case 1 …

Estimated date of first release that
can be deployed/integrated e.g. M12

Main Inputs Specify main inputs;

Input Data from Partner Pls. Indicate the partner you will be getting data from

Nature of Expected Input Pls. Indicate the input format that your component would
expect (e.g. JSON, image files, etc.)

Related Scenarios Pls. Indicate the use case scenarios requiring this data

Interfaces Pls. Indicate the connection interfaces - APIs

Triggered by Pls. Indicate the events or conditions that trigger the
component's functionality

Main Outputs Specify main outputs;

Output Data to Partner Pls. Indicate the partner you will be providing data to

59

Nature of Expected Output Pls. Indicate the output format that your component would
be expected to produce (e.g. JSON, image files, etc.)

Related Scenarios Pls. Indicate the use case scenarios requiring this data

Interfaces Pls. Indicate the connection interfaces - APIs

Main functional Requirements Pls. Specify main functional requirements - functional-1

Main non-functional Requirements Pls. Specify main non-functional requirements – non-
functional-1

Development Environment Pls. Specify the development environment and the
programming language to be used

Execution Time Pls. Specify a rough estimation of the execution time of the
component

Execution Frequency Pls. Specify a rough estimation of the execution frequency
of the component

Software Requirements Pls. Specify any SW requirements or dependencies

Hardware Requirements Pls. Specify the minimum HW required for the best
functionality of the component.

Communications Pls. Indicate specific communication requirements between
inputs, outputs or between submodules.

Integration Requirements Pls. Indicate any specific integration requirements.

Deployment Requirements Pls. Indicate any specific deployment requirements.

Security Requirements Pls. Indicate any specific security requirements.

Privacy Requirements Pls. Indicate any specific privacy requirements.

60

Critical Factors Pls. Describe any critical factors that might affect the
development or functionality of the component

Containerization Pls. Indicate if the component can be containerized (e.g.
Dockerized)

