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Executive summary 

The output of Task 2.3 of CPSoSAware are four practical demonstrators of the modelling and component 
wrapping work done in Work Package 2. This report accompanies the demonstrators, describing the demos 
and providing further technical information. The demonstrators of the D2.3 include 1) an FPGA prototype 
of the AlmaIF v2, a HW component wrapper developed in the project for connecting HW components to 
the PoCL framework demonstrated with two type of co-processor designs (OpenASIP and a Vitis HLS 
generated one), 2) MATLAB based demonstrators of automated KPI modelling, and 3) LLVM-based 
instruction mix analyzer, that is demonstrated on an OpenCL benchmark suite. 

This is a written part of the deliverable that accompanies the demonstrators by providing the model 
metadata for the key components used in the project, as examples of the model metadata extracted. It 
also describes the new AlmaIF version which is used for interfacing to the hardware blocks from the OpenCL 
based software stack. In addition to the modelling aspects of T2.3, it includes descriptions of the security 
extensions as identified in T2.4. Finally, the LLVM-based profiling tool’s implementation is described. 
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1.  Introduction 

This deliverable is the written part of the activities performed in Task 2.3 and Task 2.4. The main part of the 
D2.3 are the demonstrators which can be reproduced through access to source code repositories and pre-
recorded videos.  

A key target in Task 2.3 was to create a hardware component interface which can be used to efficiently and 
easily wrap accelerators such that they can be communicated with a common driver interface as well as 
perform peer-to-peer communication. This interface, called AlmaIF v2, was defined within the WP2 of this 
project, based on initial work in the previous project, and will be further developed and adopted in WP3 
and WP5 of CPSoSAware. Another key aspect was to create tooling for capturing static profiles of kernel 
operation usage, which was implemented as a new LLVM compiler pass. Finally, the component meta data 
modelling data collection was performed within the project with the key components along with their 
metadata listed in this project.  

As an outcome of Task 2.4, the deliverable provides model metadata for selected key components used in 
the project pilots as examples of model metadata extracted. It also includes descriptions of the security 
extensions as identified in T2.4. 

1.1 Document structure 

This document is structured into the following major sections: 

• Section 2 provides meta data and measurement data for a list of components that are either 
already used in the pilot demonstrators, or are likely going to be. 

• Section 3 describes the security extensions in the collect component meta data.  
• Section 4 defines the extensions done for the AlmaIF as well as how the new features were 

demonstrated.  
• Section 5 outlines the LLVM-Based OpenCL Kernel Instruction-Mix Characterizer. 
• Section 6 overview the Matlab-based component modeling demo with examples of how KPIs 

were included in the Matlab model.  
• Section 7 concludes the report. CPSoSAware HW and SW Component Model Properties 

1.2 Relation to the Project 

This deliverable reports the outcomes of Task 2.3 and Task 2.4 of the WP2. It provides input to WP3 Task 
3.6 for the hardware component library by introducing an updated hardware wrapper abstracting the 
component details so they can be driven by a common OpenCL driver in order to efficiently integrate FPGA-
based HW components at platform level. The OpenCL kernel profiler is utilized to provide feedback for 
producing the OpenCL-supporting soft cores in that task. Task 3.2 similarly utilizes the demonstrated 
component wrapper when integrating FPGA-based components to the distributed OpenCL platform. The 
modeling and meta data aspects feed to WP4 where the parameters are taken in account in the simulation 
runs of Task 4.4 and partitioning decisions of Task 4.1. It also feeds to Task 2.5, which provides the 
orchestration tool in close combination with the simulation tooling provided in WP4. The Vitis HLS 
generated proof-of-concept provides basis for Task 5.1. 
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1.3 Acronyms and descriptions 

 
Below are listed the most relevant abbreviations used in the document and their expanded meanings: 
 

Acronym / Term Description 
AlmaIF ALMARVI Common Hardware IP Interface 
ALU Arithmetic Logic Unit 
API Application Programming Interface 
AQL Architected Queuing Language 
ASIC Application-Specific Integrated Circuit 
AXI Advanced eXtensible Interface 
CPS Cyber-Physical System 
CPU Central Processing Unit 
CPSoS Cyber-Physical System of Systems 
CQ Command Queue 
CNN Convolutional Neural Networks 
DSP Digital Signal Processor / Digital Signal Processing 
EC Elliptic Curves 
FPGA Field Programmable Gate Array 
GPU Graphics Processing Unit 
HLS High Level Synthesis 
HSA  Heterogeneous Systems Architecture 
HW Hardware 
IP Intellectual Property 
IR Internal Representation 
KPI Key Performance Indicator 
LLVM Just LLVM (used to mean Low Level Virtual Machine). 
LSU Load-Store Unit 
MEC Multi-access Edge Computing 
MMU Memory Management Unit 
NN Neural Network 
NTT Number Theoretic Transform 
OpenASIP Open Application-Specific Instruction-set Processor 
OpenCL Open Computing Language 
PoCL Portable Computing Language 
ReLU Rectified Linear Unit 
SFU Special Function(al) Unit 
SVM Shared Virtual Memory 
SoC System-on-a-Chip 
VHDL VHSIC Hardware Description Language 
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2.  CPSoSAware HW and SW Component Model Properties 

In the CPSoSAware project, the component model properties were outlined as a set of interesting meta 
data and quantitative information which were considered adequate for serving the needs in other work 
packages (particularly Tasks 3.6, 4.1, 5.1 and 5.2) as well as other purposes such as developing alternative 
algorithms for the pilot demonstrators or new performance/cost estimation models. It also serves as a basis 
for the component library provided in D3.6 for the reliable components. This section describes the HW 
(FPGA and/or ASIC targeted realization) and SW (CPU and GPU based) components along with their model 
parameters developed by the middle of the project (M18). 

The following meta data was collected for the components: 

• Semantics: A description of the implemented algorithm’s functionality. 
• Linear execution time: This indicates if the algorithm implementation has linear execution time 

according to the size of the inputs. This helps estimating the execution time of different size inputs 
based on a priori execution times with known size inputs. 

• Description language: The input language used to define the implementation of the component. It 
can be a software language for programmable device targeted implementations or an hardware 
description language for fixed function implementations on FPGA devices. 

• Security functionality: If the component implements security functionality. 
• Reliable component: If the component implements features for reliability. 

Many of the algorithm implementations were already ported, optimized (to some degree) and measured 
in one or more devices of interest to provide indicative data of performance and performance portability.  
Thereby, we collected the following data: 

• Target device: The device used. 
• Device type: Device type or “class” typically recognized in computer engineer’s parlance (CPU, GPU, 

DSP or FPGA,). 
• Clock frequency: The clock frequency used by the device in this measurement. 
• Input size: Input size used for the measurement. 
• Runtime: The execution time of the algorithm for the given input on the given device. 
• Power: The average power consumption when executing the given task. 

The following subsections highlight the key components used in the project’s tasks and pilot 
implementations. Some of the components implement lower level, but more general-purpose functionality 
such as vector additions, matrix transposes or matrix multiplications. These can be used to hierarchically 
implement more complex functionality or algorithms such as the Kalman filter or Neural Network based 2D 
Object Detection, which further can be utilized for top level functionality such as Blinking Detection. 

2.1 Vector Add 
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A generic component used, for example, in the Kalman filter developed in the Task 3.1. Meant for easy 
adoption to various OpenCL supported devices. 

2.1.1 Metadata 

• Semantics: Performs element-wise addition of two double precision floating point vectors and 
produces a similar size output of the sum.  

• Linear execution time: Yes. 
• Description language: OpenCL C++ (Python bindings - pyopencl). 
• Security functionality: None. 
• Reliable component:  No. 

2.1.2 Measurement data 

Target device 
Device 
type 

Clock 
frequency 
(MHz) Input size Runtime (us) 

      
Intel x64 i7-7700 CPU 3600 14 + 14 double 0,01 
Intel x64 i5-650 CPU 3200 14 + 14 double 1,20 
AMD Radeon HD 5570 GPU  650 14 + 14 double 3,78 
NVIDIA GeForce GTX 1050Ti GPU  1291 14 + 14 double 1,06 
Intel x64 HD 630 GPU 350 14 + 14 double 0,3 

 

2.2 Matrix Transpose 

A generic component used, for example, in the Kalman filter developed in the Task 3.1. Meant for easy 
adoption to various OpenCL supported devices. 

2.2.1 Metadata 

• Semantics: Performs a matrix transpose. The kernel has an input of an array of NxM size with 
double precision floating points values and returns an array of MxN size with double precision 
floating points values. 

• Linear execution time: Yes. 
• Description language: OpenCL C++ (Python bindings - pyopencl). 
• Security functionality: None. 
• Reliable component:  No. 

2.2.2 Measurement data 

Target device 
Device 
type 

Clock 
frequency 
(MHz) Input size Runtime (us) 

Intel x64 i7-7700 CPU 3600 16x14 double 0,02 
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Intel x64 i5-650 CPU 3200 16x14 double 1,60 
AMD Radeon HD 5570 GPU  650 16x14 double 4,67 
NVIDIA GeForce GTX 1050Ti GPU  1291 16x14 double 1,06 
Intel x64 HD 630 GPU 350 16x14 double 0,20 

 

2.3 Matrix Multiplication 

A generic component used, for example, in the Kalman filter developed in the Task 3.1. Meant for easy 
adoption to various OpenCL supported devices. 

2.3.1 Metadata 

• Semantics: Performs a matrix multiplication of matrices with double precision floating point 
arithmetics. The kernel has an input of two matrices of NxM and MxK sizes and returns an array of 
NxK size. 

• Linear execution time: Yes. 
• Description language: OpenCL C++ (Python bindings - pyopencl). 
• Security functionality: None. 
• Reliable component:  No. 

2.3.2 Measurement data 

Target device 
Device 
type 

Clock 
frequency 
(MHz) Input size Runtime (us) 

Intel x64 i7-7700 CPU 3600 
14x14 X 14x14 
double 0,01 

Intel x64 i5-650 CPU 3600 
14x14 X 14x14 
double 1,40 

AMD Radeon HD 5570 GPU  650 
14x14 X 14x14 
double 4,78 

NVIDIA GeForce GTX 1050Ti GPU  1291 
14x14 X 14x14 
double 1,02 

Intel x64 HD 630 GPU 350 
14x14 X 14x14 
double 0,10 

 

2.4 Elliptic Curve Operation Arithmetic Unit 

The Component performs point operations on Elliptic Curves (EC) defined on Binary extension Fields 
(GF(2k) where k is at most 233 bits. The arithmetic unit performs EC point addition as well as EC point 
doubling operations that are needed in all EC based public key cryptography schemes (using in security 
protocols like TLS/SSL, SSH, SMiME etc.). The Component’s functionality can be extended to scalar 
multiplication which is the main operation of EC cryptography and used as part of T3.5. 
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2.4.1 Metadata 

• Semantics: The component takes 3 EC point inputs of at most 233 bits (padded to 256 bit numbers) 
and produces one 233 bit result. Each input consists of two 233 bit numbers corresponding to 
polynomials defined on GF(2k). There is software model implementation and also a hardware 
implementation modelled using VHDL 

• Linear execution time: Yes. 
• Description language: C (software implementation) and VHDL (hardware implementation) 
• Security functionality: Secure implementation. 
• Reliable component:  No. 

2.4.2 Measurement data 

Target device Device type 
Clock frequency 
(MHz) Input size Runtime (us) 

ZCU104 –Arm Cortex 
A53 (Zynq Ultrascale+) CPU 1.5 GHz 3x32 uint32 148250 
ZCU104 –FPGA PL (Zynq 
Ultrascale+) FPGA 100 MHz(bus clock) 3x32 uint32 1200 (at average) 
     

2.5 Number Theoretic Transform (NTT) 

A generic component used, for example, in the Dilithium Digital Signature developed in the Task 3.5. Meant 
for easy adoption to various OpenCL supported devices. 

2.5.1 Metadata 

• Semantics: Performs the Number Theoretic Transform (NTT) function on a number of polynomials. 
The kernel has an input vector that is comprised of N polynomials with 256 coefficients each in the 
time domain, size N*256, and returns a vector that is comprised of N polynomials of size 256 with 
the coefficients in the frequency domain, size N*256. 

• Linear execution time: Yes. 
• Description language: OpenCL C. 
• Security functionality: Secure implementation. 
• Reliable component:  No. 

2.5.2 Measurement data 

Target device 
Device 
type 

Clock 
frequency 
(MHz) Input size Runtime (us) 

Intel x64 i7-7700 CPU 3600 5x256 uint32 8,009 
Intel x64 i5-650 CPU 3600 5x256 uint32 14,628 
ZCU104 – Arm Cortex A53 CPU 1500 5x256 uint32 116,326 
ZCU104 – Xilinx VITIS  FPGA 150 5x256 uint32 1232,182 
AMD Radeon HD 5570 GPU  650 5x256 uint32 73,484 
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NVIDIA GeForce GTX 1050Ti GPU  1291 5x256 uint32 13,175 
Intel x64 HD 630 GPU 350 5x256 uint32 25,838 

 

2.6 Inverse Number Theoretic Transform (NTT) 

A generic component used, for example, in the Dilithium Digital Signature developed in the Task 3.5. Meant 
for easy adoption to various OpenCL supported devices. 

2.6.1 Metadata 

• Semantics: Performs the Inverse Number Theoretic Transform (NTT) function on a number of 
polynomials. The kernel has an input vector that is comprised of N polynomials with 256 
coefficients each in the frequency domain, size N*256, and returns a vector that is comprised of N 
polynomials of size 256 with the coefficients in the time domain, size N*256. 

• Linear execution time: Yes. 
• Description language: OpenCL C. 
• Security functionality: Secure implementation. 
• Reliable component:  No. 

2.6.2 Measurement data 

Target device 
Device 
type 

Clock 
frequency 
(MHz) Input size Runtime (us) 

Intel x64 i7-7700 CPU 3600 5x256 uint32 9,285 
Intel x64 i5-650 CPU 3600 5x256 uint32 16,683 
ZCU104 - Arm Cortex A53 CPU 1500 5x256 uint32 116,110 
ZCU104 - Xilinx VITIS FPGA 150 5x256 uint32 940,955 
AMD Radeon HD 5570 GPU  650 5x256 uint32 67,654 
NVIDIA GeForce GTX 1050Ti GPU  1291 5x256 uint32 11,668 
Intel x64 HD 630 GPU 350 5x256 uint32 23,051 

 

2.7 Pointwise Montgomery Multiplication  

A generic component used, for example, in the Dilithium Digital Signature developed in the Task 3.5. Meant 
for easy adoption to various OpenCL supported devices. 

2.7.1 Metadata 

• Semantics: Performs a pointwise multiplication of polynomials in NTT domain representation 
performing a montgomerry reduction. The kernel has an input vector that is comprised of two N 
polynomials with 256 coefficients each in the NTT domain, size N*256, and returns one vector that 
is comprised of N polynomials of size 256 with the coefficients being the result of pointwise 
multiplication of the input polynomials, size N*256. 
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• Linear execution time: Yes. 
• Description language: OpenCL C. 
• Security functionality: Secure implementation. 
• Reliable component:  No. 

2.7.2 Measurement data 

Target device 
Device 
type 

Clock 
frequency 
(MHz) Input size Runtime (us) 

Intel x64 i7-7700 CPU 3600 2x5x256 uint32 0,982 
Intel x64 i5-650 CPU 3600 2x5x256 uint32 1,676 
ZCU104 – Arm Cortex A53 CPU 1500 2x5x256 uint32 20,482 
ZCU104 – Xilinx VITIS FPGA 150 2x5x256 uint32 282,696 
AMD Radeon HD 5570 GPU  650 2x5x256 uint32 7,963 
NVIDIA GeForce GTX 1050Ti GPU  1291 2x5x256 uint32 3,238 
Intel x64 HD 630 GPU 350 2x5x256 uint32 5,043 

 

2.8 2D Object Detection and Tracking Using Neural Networks (NN) 

A fully convolutional network to perform object detection and tracking.  

2.8.1 Metadata 

• Semantics: The component receives as input a three channel image of size 384x1248 and outputs 
a tensor with dimensions 24x78x9 corresponding to region proposals and class probabilities for 
three candidate classes, pedestrians, cars and cyclists. 

• Linear execution time: Yes. 
• Description language: C++/Python, Tensorflow, Keras. 
• Security functionality: Secure implementation. 
• Reliable component:  No. 

2.8.2 Measurement data 

Target device Device type 

Clock 
frequency 
(MHz) Input size Runtime (us) 

NVIDIA Jetson TX2 CPU 
(embedded) CPU 1400 

MHz 
3x384x1248 
uint8 RGB 670000 

NVIDIA Jetson TX2 CPU 
(embedded) CPU 1400 

MHz 
3x384x1248 
float32 RGB 17000000 
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NVIDIA Jetson TX2 GPU 
(mobile) 

Tegra X2 
Compute 
Capability 
6.2 

3x384x1248 
uint8 RGB 670000 

NVIDIA Jetson TX2 GPU 
(mobile) 

Tegra X2 
Compute 
Capability 
6.2 

3x384x1248 
float32 RGB 22000000 

 

2.9 Conv2D+ReLU+maxpool 

2.9.1 Metadata 

• Semantics: Performs the most common operations of Convolutional Neural Networks (CNNs): 2D 
convolution, ReLU and max pool. 

• Linear execution time: Yes. 
• Description language: C. 
• Security functionality: Secure implementation. 
• Reliable component:  No. 

2.9.2 Measurement data 

Target device 
Device 
type 

Clock 
frequency 
(MHz) Input size Runtime (us) 

Power 
(W) 

CPU, ARM A9 CPU 600 227X227 RGB 4696000  
FPGA, XC7Z020 FPGA 100 227X227 RGB 70000 2,20 
FPGA, ZU3EG FPGA 100 227X227 RGB 64000 2,60 
      

2.10 Face Detection 

A service of the Driver Monitoring System (DMS) Android application which includes the face detection, the 
extraction of the facial landmarks (i.e., eyes, mouth, nose, cheeks etc.) and the estimation of the following 
two possibilities: (i) the driver has his/her eyes closed, (ii) the driver is yawning.  

2.10.1 Metadata 

• Semantics:  This component processes the frames coming from the smartphone’s front camera 
and analyses it, in order to extract information about whether the driver has his/her eyes closed, 
or he/she is yawning.   

• Linear execution time: Yes. 
• Description language: Kotlin/Java. 
• Security functionality: None. 
• Reliable component:  No. 
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2.10.2 Measurement data 

Target device Device type CPU (GHz) Input size Runtime (us) 
Honor 10 Smartphone 4x2.4 & 4x1.8   30fps 3000 
Huawei P30 Pro Smartphone 2x2.6 & 2x1.92 & 4x1.8  30fps 2000 
Samsung Galaxy A31 Smartphone 2x2.0 & 6x1.7 30fps 3000 

 

2.11 Pose Detection 

A service of the DMS application which includes the extraction of several body landmarks of the upper body 
of the driver (i.e., shoulders, elbows, wrists) and the estimation of his relevant position (i.e., if he/she has 
his/her hands on or off the wheel).  

2.11.1 Metadata 

• Semantics:  This component processes the frames coming from the smartphone’s front camera 
and analyses it, in order to extract information about driver’s relevant position. 

• Linear execution time: Yes. 
• Description language: Kotlin/Java. 
• Security functionality: None. 
• Reliable component:  No. 

 

2.11.2 Measurement data 

Target device Device type CPU (GHz) Input size Runtime (us) 
Honor 10 Smartphone 4x2.4 & 4x1.8   30fps 1000 
Huawei P30 Pro Smartphone 2x2.6 & 2x1.92 & 4x1.8  30fps 1000 
Samsung Galaxy A31 Smartphone 2x2.0 & 6x1.7 30fps 2000  

 

2.12 Heart Rate Monitoring 

A service of the DMS application which extracts driver’s heart rate through his/her smartwatch while he is 
driving.  

2.12.1 Metadata 

• Semantics:  This component is responsible for retrieving driver’s heart rate from his/her 
smartwatch in order to achieve better results regarding driver’s drowsiness level. To achieve that, 
the component is communicating with Google Fit app, while the rate of retrieving driver’s heart 
rate, depends on the smartwatch’s capabilities.  

• Linear execution time: Yes. 
• Description language: Kotlin/Java. 
• Security functionality: None. 
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• Reliable component:  No. 
 

2.12.2 Measurement data 

Target device Device type Sensor Runtime (s) 
Xiaomi Amazfit Bip Smartwatch PPG   12 
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3. Modeling Extra Functional CPSoSAware KPIs 

This section summarizes the methodology followed to model the extra-functional KPIs within the 
CPSoSAware project, reports the list of all the KPIs currently defined, and presents some of them in details. 
We finally concentrate on methods to extend the component models (meta-models) with specific KPIs 
related to non-functional requirements with a focus on specific annotations for security. 

The first step is to define the extra functional KPIs (or non functional KPIs). They are defined as all the other 
KPIs. To define them, we decided to use the methodology conceived within the framework of the H2020 
CERBERO project [1]. We selected this methodology because of its generality and its capability of expression 
were perfectly suiting the needs of the CPSoSAware project. Here we recall the principles of that KPI 
definition methodology. The pillar of the methodology is the definition of the concept of KPI, that is done 
in the following way: “A KPI is a quantifiable parameter associated with a metric. A KPI evaluates one critical 
parameter of a CPS and evaluate the discrepancies from its long term goals”. KPIs are expected to have the 
following properties:  

• KPIs are always defined with a metric: the metric depends on the system 

• KPIs are measuring a specific CPS: the set of KPIs used to measure a system are specific to that 
system 

• Each KPI belongs to a family: KPIs is tailored to the CPS, but it will belong to a family. Properties of 
family of KPIs are the reusable element of the library of KPIs 

• KPIs are always defined with structured/common formalism: formally defined KPIs automatically 
inherit all the properties of a family 

• KPIs drives the evaluation of the system during the whole live cycle: KPIs are used at design time, 
but they also be used to drive the adaptation 

To collect the KPI definition, we followed an iterative procedure that involved all the partners. The 
procedure we followed to collect and formalize the KPIs was the following. Firstly, we prepared a form to 
collect the description of the KPI in English language. The form contained the following fields: KPI Name, 
Class, Description, Metric, Metric Computation. The form was sent to all the partners of the project. All the 
forms have been collected and revised. From the definition in English, it was extracted a formal definition 
expressed in mathematical language, and other characteristics of the KPI were highlighted (such as 
addressed properties). The mathematical definition of each KPI and the updated forms were sent back to 
for review. This definition will be used for the realization of MATLAB models, described in Section 6. 

By their nature, KPIs are a thing that evolves and changes. We thus did not close the list of KPIs. On the 
contrary, we expect that such list will be update and modified during the whole evolution of the project. 
Currently, we have identified and defined more than 30 KPIs (24 of them have been also formalized), while 
10 other are currently undergoing the process of definition. For each KPI, we define the following fields: 
KPI Name, KPI Class, Goal, Addressed Property, Description, Metric, Metric Computation, KPI Mathematical 
Definition. We discuss one example in details to explain in details each of these fields and we report few of 
them in the rest of the section as demonstrative example. 

Example: Algorithm Update Speed 
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• KPI Name: Algorithm Update Speed 

This is simply the name of the KPI 

• KPI Class: Additive 

This is the class of the KPI. The concept of class (or family) of KPI was part of the CERBERO KPI methodology 
that we decided to use to model the KPIs of CPSoSAware [1]. In a nutshell, a class of KPI is a group of KPIs 
having the same properties, in particular, a group over which the same algebraic operations are valid. For 
instance, the elements belonging to the class “additive” are all elements where the operation addition is 
valid and that, for instance, they are all monotone. 

• Goal: Minimize 

This is the goal of this KPI. In this case, we want to achieve the minimum time needed to update the 
algorithm, so the goal is to minimize the value of the KPI. 

• Addressed Property: Algorithm Speed 

This is the properties that the KPI is covering (algorithm speed, safety, security, reliability, …). In this case, 
the property is algorithm speed. 

• Description: Time needed by the algorithm to update location and vehicle behaviour should be 
within real time constraints (e.g., max 100ms) 

This is the English description of the KPI, in a text that is understandable by a human being. 

• Metric: Algorithm’s worst case execution time 

This is the metric that KPI is computed. In this case we are computing the worst case execution time, since 
the algorithm speed update is equal to the worst case execution time needed by the algorithm to update 
the location of the vehicle. 

• Metric Computation: Measured time between update of sensor inputs till response to updated 
inputs 

This is description, in English, of the way in which the metric described in the section “Metric” is computed. 
The algorithm execution time is computed measuring the time that passes between the update of the 
sensors used to locate the vehicle and the response that updates the inputs. 

• KPI Mathematical Definition: 

MAX(T_Alg_input_update(i) - T_sensorResponse(i)) for all i measurements for all sensor input 

This is the mathematical formulation of the computation of the KPI. This is the formulation that is then 
directly modelled using the matlab language. In the case of this example, the worst-case execution time is 
computed as the maximum of the differences between the time in which a sensor respond to a change and 
the time after which the algorithm reacts to the change in the input values coming from the sensors. 
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The list of extra-functional KPIs is maintained in an excel document that is stored in a repository shared 
among partners and constantly updated. Changes in the KPIs formulation, removal or addition to the list 
are promptly recorded in the file. 

The KPIs defined here are used also to extend system models. At high level, the whole method used in 
CPSoSAware to annotate all the non-functional requirements (including some very specific, such as the 
security related ones) consists of three main steps. The first is to identify and define, following the 
methodology previously described, all the non-functional KPIs related with the use case. Once the KPIs are 
defined, they are modelled, using the same approach used of all the other KPIs. Finally, the models of the 
non-functional extension are instantiated within the model of the components where non-functional 
requirement are needed. We will discuss how this process works in details in the rest of this section. 

In the CPSoSAware project, we defined all the KPIs using the methodology described above. As mentioned, 
one of the most important characteristics of the selected methodology for modelling KPIs is that is general, 
namely it can be used to define any type of KPI. This includes, in particular, also the non-functional and the 
security related KPIs which we need to define in this project. We thus define non-functional requirements 
and security extension in the same way as other KPIs. Non-functional requirements and security 
requirements could be difficult to measure, as often they are simply a requirement such as “the system 
should be resistant against side channel attacks” or “the data between these components should be 
encrypted”. In the first case, we changed the definition of the KPI into “The system should be resistant 
against side channel attacks carried out using up to K number of traces”, introducing a threshold (K, the 
number of traces available for the attacker) that allows us to quantify the resistance. In the second case, 
we used a boolean metric that indicates if functionality to encrypt the communication is present or not. As 
such, they should be defined with a mathematical formalism and they should be defined together with a 
metric to evaluate them.  

All the KPIs (and, as part of them, the metric to measure them) identified so far within the CPSoSAware 
project have been described in English language, defined by means of a mathematical function and 
modelled in matlab language (the description of the models is detailed in Section 6 of this deliverable). The 
final step is to integrate the models of the non-functional and security KPIs with the model of the 
component. This is done by calling the functions that evaluates the KPIs from the model of the component. 
The function call should include all the parameters of the model, including relevant thresholds, to correctly 
evaluate the required KPIs. The task of correctly passing all the needed parameters is left to the designer 
of the model. However, this is not a problem, since the selection of matlab as modelling tool for KPIs allows 
a large flexibility in interfacing. The matlab model allows us to demonstrate KPI evaluation in practice with 
the input variables fed in. 
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4.  AlmaIF v2: Common Hardware Component Interface 

The main goal for the ALMARVI Common Hardware IP Interface (AlmaIF) is to enable plug’n play style of 
customization of the hardware platform at the system level, by allowing adding accelerators from different 
partners to a new hardware platform design with an easy integration to a common OpenCL-based 
heterogeneous system software platform. The AlmaIF concept was created originally in ALMARVI ECSEL JU 
project, where the v1 of the interface was defined and tested on FPGA in a laboratory setting [2]. Over the 
CPSoSAware project, the key issues in the AlmaIF v1 were identified with an improved v2 proposed to 
provide IP wrapping for the purposes of the CPSoSAware project.  

The key motivation for the AlmaIF is to provide a hardware interface that is generic enough for sharing 
driver code in the OpenCL implementation layer. A hardware abstraction layer such as AlmaIF makes it 
easier to plug in different AlmaIF-compliant devices in a compute platform with only minimal changes to 
the driver code. This helps in making the CPSoSAware execution platform composable: as devices share a 
common control interface, it reduces the integration effort at multiple levels due to not requiring device-
specific knowledge at the simplest control functions for verification and execution purposes, for instance. 
The first version of AlmaIF and the general concept is more thoroughly described in [2]. 

Ultimately, standardizing the interfaces of the accelerators enables accelerators to communicate between 
each other in a peer-to-peer manner more efficiently without needing special communication and control 
means with each accelerator type. This philosophy is similar to the Heterogeneous System Architecture 
(HSA) specification with a light-weight packet processor interface [3]. 

A key goal of AlmaIF v2 in comparison to its first version was to provide better interfacing to fixed function 
accelerators, by utilizing a common OpenCL driver that understand that AlmaIF memory mapped interface 
with a registry of built-in kernels and associated integer IDs that the accelerator provides. The OpenCL 
driver, called PoCL-accel, is already upstreamed to the open source PoCL project [4]. 

4.1 AlmaIF v2 Changes in Comparison to AlmaIF v1 

In the following, we present the hardware interface v2 that allows launching programs on different 
accelerators and sending results back to the host processor. The interface is designed to be sufficient to 
support OpenCL 1.2 programs, and thus also OpenCL 3.0 which is its minimal superset. 

4.1.1 Accelerator Memory Area Packing 

The HW accelerator IP can now use accelerator memory area packing (see Figure 1) to avoid wasting the 
address space. It gives the starting addresses and sizes for configuration/instruction, command queue and 
data memory regions. 

The hardware decoder can become somewhat more complex if we define whatever starting address and 
size for the memories. However, the memory area packing can be defined by the accelerator, so it can still 
use a static decoder. It can even choose to use the basic decoder that utilizes the two most significant 
address bits used in AlmaIF v1. Addresses are set design time since the memories are design time, so it can 
simplify the implementation overheads.  

For the memory mapped AlmaIF, this requires new data registers for the memory region starting addresses 
and sizes. 
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The flexibility makes it possible for the accelerator to implement the memory regions inside a single 
memory component (a single load-store unit, LSU), or split it into parallel memories etc. (3 LSUs). The driver 
doesn’t need to know the details, it’s enough that it can access it through the AXI slave using the starting 
addresses and sizes as defined in the AlmaIF interface. 

4.1.2 AXI Master Support 

The PoCL driver should know if the IP can access any physical address for directly loading/storing buffer 
data without copying to the on chip memory first. This is now a flag in the property space that tells that the 
accelerator can access AXI bus directly (the physical address space). 

4.1.3 64b Addressing 

Support for both 32b and 64b hardware platforms was added by making all addresses 64 bits. 

4.1.4 Example Command Queue Processor 

This example shows a generic small command queue processor based on either OpenASIP or a C-based 
wrapper meant for HLS (see Figure 2) that: 

• Waits until doorbell-signalled. 

• Parses AQL command queues and passes the arguments and the work-item counts etc. to an 
function unit that actually performs the kernel function (defined with whatever HW design means, 
hand-made RTL, HLS tools, ...) and blocks until finished. The FU could have I/O that exactly matches 
the kernel argument list.  E.g. vecadd would get 3 pointers in where two are pointers to input 
buffers and one to the output buffer.  

• Signals the listeners 

• Understands the barrier packet semantics etc. 

The OpenASIP implementation of the command queue processor implements the following memory map 
for the data memory: 

1. Program data first (not controlled through AlmaIF interface) 

o Global data 
o Uninit global data 
o Heap (controlled by the _end symbol) 
o Stack (grows downwards towards heap, can be controlled with --init-sp of tcecc) 

2. Global buffers (the data memory allocated by the bufalloc a.k.a. DATA memory region.) 

3. AQL command queue (a.k.a. CQ memory region) 

 

4.1.5 Other Updates 

• Keep the queue format specified (HSA AQL-inspired: other devices than hosts can send work too). 
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Figure 1: A comparison between AlmaIF V1 and AlmaiF V2 memory maps using an example accelerator with no need for 
configuration memory. In V2 the accelerator can define the starting addresses for the memory regions and use a more 
optimal memory area packing strategy than the static address decoding proposed in V1. In V2 the accelerator can also 
combine the memory components and provide a pointer to the address where the memory region begins. Naturally, in 
V2 the accelerator could also define the V1-style memory map if it wanted to.  

4.2 Memory Addressed Registers 

The base address is the only thing necessary in AlmaIF v2 to discover and control an AlmaIF-device. For this 
purpose, the information register segment holds at least the following read-only registers that are 
presented with offsets from the device’s physical AlmaIF starting address. 

Offset Name  

0x000 STATUS Status of the accelerator. Bit 0 is high when the execution is stalled 
due to any reason, bit 1 is high when the external stall signal is 
active, and bit 2 is high when the accelerator reset is active. 

0x100 CQ_READ_IDX_LOW Read index of the command queue (low 32 bits). Read only. 
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Offset Name  

0x104 CQ_READ_IDX_HIGH Read index of the command queue (high 32 bits). Read only. 

0x108 CQ_WRITE_IDX_LOW Write index of the command queue (low 32 bits). Writing to this 
register increments the 64-bit value. 

0x10C CQ_WRITE_IDX_HIGH Write index of the command queue (high 32 bits). Read only. 

0x200 COMMAND Command register to control execution. Writing 1 to this register 
resets the accelerator, writing 2 lifts reset and external stall, and 
writing 4 enables the external stall signal, pausing execution (4 is 
an optional feature). 

0x300 DEVICE_CLASS Device class (vendor ID) of the accelerator. Currently unused by the 
driver. 

0x304 DEVICE_ID Device ID of the accelerator. Currently unused by the driver. 

0x308 AlmaIF version AlmaIF v1 = 1 
AlmaIF v2 = 2 

0x30C Core count Number of OpenCL Compute Units in the device. 

0x310 Control memory size 32b size. 

0x314 Configuration/instruction 
memory size 

32b size. This memory is used for instructions (software 
programmable co-processors) or configuration bits (configurable 
hardware accelerators). 

0x318 Configuration memory 
starting address. 

64b starting address of the device's memory that maps instructions 
or the configuration bits. The actual memory can be onchip or 
offchip, in the latter case the device likely has a memory hierarchy 
with a dynamic cache.  In AlmaIF v2 this is a physical address, in 
v3 we want to move to virtual addressess. If we want to support 
partial interfacing with the virtual memory, this address should be 
writable by the host: It would update the starting address of the 
(contiguous) page for instructions after asking it from the memory 
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Offset Name  

manager of the OS. Top level 64b generic is needed for setting this 
for the onchip memory case: the physical address mapping should 
be design-time known. 

0x320 Command queue memory 
size 

64b size. The command queue fills the entire region, so the size of 
this memory is Max_number_of_packets * Packet_size. 
Max_number_of_packets must be a power-of-two. 

0x328 Command queue memory 
starting address. 

64b starting address of the device’s memory that maps the AQL 
queue. See  above. 

0x330 Data memory size 64b size. 

0x338 Data memory starting 
address. 

64b starting address of the device's memory that maps global 
buffers and perhaps other device-specific shared data and is visible 
to the AXI bus. The actual memory can be onchip or offchip, in the 
latter case the device likely has a memory hierarchy with a dynamic 
cache. See  above. 

0x340 Feature flags 64b size register with boolean feature flags. Bit semantics: 
Bit 0 = AXI master support.  
Bit 1 = writable instruction memory starting address. 
Bit 2 = writable command queue memory starting address. 
Bit 3 = writable data memory starting address. 
Bit 4 = whether 'pausing' is supported (COMMAND 4). 
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Figure 2: AlmaIF v2 with an example software programmable OpenASIP core that also handles command queue 
processing. 
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Figure 3: Generic HW accelerator with AlmaIF v2 where there is a command queue processing handling the control flow 
and launching Accelerator functionality implemented manually in RTL or generated from HLS. 

4.3 Software Emulation / C Hardware Model 

Instead of memory mapping of a fixed-function accelerator, the PoCL-accel driver also supports emulating 
an accelerator in software. The driver creates a software thread, which pretends to be a fixed-function 
accelerator with the AlmaIF interface.  

There are at least three motivations for this software emulation: 

1. Easier debugging of OpenCL applications, as one does not need an FPGA for testing accelerator-
based programs. 

2. Easier debugging of the PoCL’s accel-driver. 
3. The emulation function (written in C) serves as a good starting design point for HLS-based AlmaIF 

accelerators. 

4.4 AlmaIF v2 Demonstrator 

In order to ensure that modifications to the interface work in a practical environment, two OpenASIP-based 
accelerators with read-only arrays as instruction memories are created with the right-most memory map 
from Figure 1: A comparison between AlmaIF V1 and AlmaiF V2 memory maps using an example accelerator 
with no need for configuration memory. In V2 the accelerator can define the starting addresses for the 
memory regions and use a more optimal memory area packing strategy than the static address decoding 
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proposed in V1. In V2 the accelerator can also combine the memory components and provide a pointer to 
the address where the memory region begins. Naturally, in V2 the accelerator could also define the V1-
style memory map if it wanted to.. The accelerators can execute a set of built-in kernels (vector addition, 
multiplication and blinking a led). The accelerators are simultaneously placed on a Zynq-7020 FPGA and 
controlled using PoCL running on 32b ARM Cortex-A9. A led blinking and a simple vector arithmetic OpenCL 
programs are evaluated on it and the output result is verified. A demo video of the system in action can be 
viewed in YouTube: https://www.youtube.com/watch?v=pBQsOfalKZk. Two screenshots of the 
demonstrator are shown in Figure 4 and Figure 5. 

 

Figure 4: Two AlmaIF accelerators placed in Vivado block design for Zynq-7020 FPGA. On the right are the physical 
addresses used for the driver to find the accelerator devices. 

 

Figure 5: A screenshot from the AlmaIF demonstration with two accelerator devices and a computation with shared data 
between them. The physical address 0xE triggers the driver to create an emulation thread, which can be used by itself 
or together with FPGA accelerators. 

4.5 AlmaIF-accelerator Implemented with High-Level Synthesis Tools 

This section presents the work performed by UoP in building a methodology to connect PoCL with HLS-
based accelerators based on the ALMAIF interface. This is a collaborative work between UoP and TAU and 
it is considered an important part of the project, since through the proposed step-by-step approach it is 
possible to offload specific computational kernels to fixed-logic accelerators generated by the Xilinx HLS 
tool, which proves the portability of the approach. 
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More specifically, for the interface to be usable for other than OpenASIP-cores, there should be an easy 
and systematic way to modify existing accelerators to implement the AlmaIF interface so they can be 
seamlessly integrated to the PoCL platform.  

Figure 3 shows a high level design in which a separate AlmaIF controller is used to handle the AlmaIF control 
interface and command queue processing. This AlmaIF controller needs to be easily available and 
modifiable depending on the type of the accelerator. Therefore, defining it in an HLS tool makes it possible 
to easily customize it and to plug it directly into HLS-based accelerators. 

A prototype example of this implementation consists of a simple accelerator, called AddTwo accelerator, 
which adds a constant number (number in the example) to all elements of an array data if the content of 
the first element of the given array is equal to one. Figure 6 shows the HLS implementation of the AddTwo 
accelerator.  

 

Figure 6: The HLS implementation of the AddTwo accelerator. 

This accelerator is designed to have a single BRAM interface. A dual port BRAM is used for implementing 
the memory part of the AlmaIF interface. The first port of this BRAM is connected to the AddTwo 
accelerator and the second port is connected to the host system; that is an ARM processor in a Zynq FPGA 
SoC. Figure 7 depicts the interface of the AddTwo accelerator. 
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Figure 7: The interface of the AddTwo accelerator. 

The accelerator is exported as an IP to be used in a Vivado project which implements the processing system 
that will run the PoCL middleware, the interface to the accelerator, and the AddTwo accelerator. Figure 8 
shows the block diagram of the AddTwoPlatform Vivado project. In this figure, the AddTwo accelerator is 
part of the PoCL platform which supports FPGA accelerators. 

 

Figure 8: The Vivado project of PoCL platform supporting FPGA accelerators. 

The platform shown in Figure 8 consists mainly of an ARM processing system, a BRAM controller, the 
accelerator, and the BRAM. The BRAM can be accessed by both the processing system and the accelerator. 
The processing system has access to the BRAM through the physical system address of the BRAM controller 
block as shown in Figure 9. 
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Figure 9: The physical address of the BRAM controller module. 

The Vivado project of Figure 8 is built and exported along with the corresponding FPGA bitstream to be 
used by the PetaLinux tools. The PetaLinux tools will generate the boot files and the filesystem of a Linux 
distribution which will run PoCL and it will provide the software interface to the accelerator. Figure 8 shows 
the Vivado project export and Figure 10 the Petalinux build output. 

  

 

Figure 10: Export of the Vivado project to be used by the PetaLinux tools. 
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Figure 11: Successful build of the PetaLinux project. 

In order to validate the correct operation of the PoCL HLS prototype, the PetaLinux project result files are 
written to an SD-card which is used for booting the Zedboard which hosts a xc7z020 FPGA SoC device. 
Figure 12 shows the board and the PetaLinux login screen. 
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Figure 12: Zedboard running PetaLinux. 

After PetaLinux boot process is finalized, we use the devmem utility to test the AddTwo PoCL prototype 
accelerator. After boot, the BRAM contents are all zero. Numbers 1, 2, and 3 are written in the 1st, 2nd, 
and 3rd 32-bit addresses. When the content of BRAM address 0 becomes equal to 1, the accelerator adds 
2 to every content of the BRAM (up to the address defined by the AddTwo accelerator). Figure 13 shows 
the testing of the operation of the AddTwo PoCL prototype accelerator in PetaLinux. 
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Figure 13: Testing of the PoCL-accelerator prototype in Linux running on the FPGA SoC platform. 

The next steps of this development process are to use the actual PoCL sofware to control the HLS 
accelerator and also to improve the AlmaIF implementation. More specifically, UoP will continue to work 
in this direction in order to build a demo of the above approach showcasing the connection of PoCL 
middleware to a more complex HLS-based fixed logic accelerator within the WP3 and 5.  

4.6 Future Work: AlmaIF v3+ Ideas 

Some of the features that were discussed while conducting the Task 2.3 that will be useful and might be 
partially implemented within the Task 3.6 in relation with the work on the OpenCL programmable soft cores 
as follows: 

• MMU support for passing virtual addresses around the system with paged memory management. 
This would enable implementing the OpenCL 2.0 SVM and make accelerators much more flexible 
since they would not be reliant on continuous buffer regions. 

• OpenCL 2.0 pipes support. Task pipeline based streaming is essential on getting good 
performance out of FPGAs, thus good support for FIFO-based I/O should be added to the 
interface. 

• Support for RDMA-like technologies for directly accessing the local memories of accelerators 
across network. 
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5. LLVM-Based OpenCL Kernel Instruction-Mix Characterizer 

Profiling based techniques have gained much attention on computer architecture and software analysis 
communities. The target is to rely on one or more profiling tools in order to identify specific code pieces of 
interest e.g., code pieces that slowdown a given application. The extracted code pieces can be further 
modified and optimized. In general, the profiling tools can be classified as deterministic, statistical-based, 
or hardware performance counter-based.  

A common characteristic of the available profiling tools is typically based on analysing or even manipulating 
(in case of binary instrumentation tools) machine-level code. This approach come with two main drawbacks. 
First, a lot of information (even GBytes of data) needs to be gathered, stored, post-processed, and 
visualized. Second, the performed analysis of the gathered data is platform-specific and it is not 
straightforward to categorize the given applications/program phases/kernels into distinct categories that 
have the same or almost the same behaviour (e.g., the same percentage of computational vs. control 
instructions). The latter stems from the fact even small changes in the source code of the applications might 
lead to significantly different machine code implementations. Therefore, even two specific program kernels 
exhibit the same behaviour (e.g., they have the same number of instructions, but with a different ordering), 
it is very difficult for a machine-code level profiling tool to assess their similarity, simply because the 
generated machine level code might have significant differences resulting in many missing opportunities 
for the available profiling tools. To address this issue, as part of Task 2.3 of the CPSoSaware project, we 
developed a profiling tool that is able to operate on the machine independent intermediate representation 
(IR) level. The input to the profiler can be either C/C++ or OpenCL code.  

The goal of developed profiler is to classify different OpenCL kernels wrt. the number of IR-level instructions. 
The profiler relies on the LLVM API and it is able to hierarchically (at various levels of the call stack) and 
recursively parse the IR code and extract various useful statistics. As part of this deliverable, we showcase 
the design and implementation of the LLVM-based profiler by analyzing a subset of the PolyBench 
benchmarks. The output of the profiler will act as a “signature” of the OpenCL kernels that will be executed 
on the end-device. The outputs will be provided to the WP4 to be used for the modelling related activities 
performed as part of the work package. 

5.1 The LLVM IR Instruction Mix Profiler 

The LLVM toolchain [6] ships with a number of passes that can operate at various levels. These passes are 
divided into two main categories: analysis passes and transformation passes. Analysis passes only extract 
information from the source code of the input application, while transformation passes can also apply 
specific program transformations, modifying functions, basic blocks or whole programs. For the profiler 
created for the project, we developed an analysis pass that is built on top of existing LLVM passes. 

The profiler pass is modular and it can be easily integrated in the LLVM codebase, since it relies on the 
LLVM API. As a first step, the LLVM pass takes as its input an LLVM IR module and outputs a call graph. The 
call graph information is a useful representation of the input IR code (thus, the input application) in order 
to understand the basic structure and organization of the code. However, it is not suitable for more complex 
purposes such as power consumption analysis, security analysis etc. To accomplish the latter goals, our 
proposed LLVM pass is extended to record and classify the various IR opcodes of the input source codes.  
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The developed profiler pass includes a classification step that is able to classify the IR opcodes into specific 
categories. These categories are given as inputs to the classifier. A high level design of the developed 
profiler is shown in Figure 14: The LLVM-pass takes as input the LLVM IR code and a mapping between IR 
instructions and their corresponding category and outputs: i) The different IR instructions organized in 
categories for the input application and ii) the callgraph. This means that the IR level statistics can be given 
at a hierarchical manner wrt. the functions of the program. 

 

Figure 14: Profiler overview. 

5.2 Profiler Design 

The LLVM project provides a well-organized API that allows to add additional LLVM transformations with 
new features. In the context of the profiler that produces statistics of the different instruction types, the 
key API is the Instruction class of LLVM. We implemented new hooks and features in order to classify the 
IR opcodes of the input application into different IR categories. More specifically, the LLVM toolchain 
provides a class called Function that represents a function in the LLVM IR. The class Function provides an 
iterator for each BasicBlock class and in each basic block an iterator for its Instruction classes. In Figure 15, 
these steps are annotated as (4) and (5). Therefore, we have at least three abstraction layers in our source 
code to begin with. 

Moreover, all LLVM passes are subclasses of the LLVM Pass class and their functionality comes from 
overriding the virtual methods inherited from the Pass class. For this work, we overrode the function 
runOnFunction (step 1 in Figure 15). The pass iterates through the various functions in the IR, the basic 
blocks of each function, and finally the instructions of each basic block. During this process, the profiler 
holds a record for every visited instruction and updates a data structure with their total numbers of 
occurrences (step 6 in Figure 15). In addition, it operates recursively when the instruction ”call” is visited 
(step 7 in Figure 15) in order to create a call graph for the function and accordingly count all the instructions 
in the created call tree. Finally, the classification of each instruction, based on the predefined (input) 
categories, is performed. The output of the profiler is a call graph for each function, an analysis of all its 
opcodes, and a power figure analysis (as a result of the classification of the LLVM IR instruction types). 
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Figure 15: Profiler block diagram. 

5.3 Demonstrator: Example Runs of the Profiler  

For validation purposes we present an example of an OpenCL kernel (see Figure 16), on which we applied 
our LLVM pass. 
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Figure 16: Source code of doitgen kernel 2. 

This OpenCL kernel is part of the doitgen benchmark from the Polybench Suite [POLY]. This kernel is used 
for Multiresolution Analysis or MADNESS and is typically is used in linear algebra for solving integral and 
differential equations of many dimensions (more details about this kernel is out of the context of this work). 
This source code corresponds to the LLVM IR code (shown in Figure 17) as it is generated by the clang 
compiler. 
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Figure 17: LLVM IR code of doitgen kernel 2. 

As we can see in lines 5 and 7 in Figure 17, there are two call instructions that correspond to the get_ 
global_id() function calls in the source code. In addition, the if statement in source code (line 6 in Figure 
16) is translated to the IR opcode depicted in lines 9, 10, and 11 in Figure 17. Line 12 is the branch 
instruction coming from the if...then label or the if...end label. The body of the if statement corresponds to 
the lines 15-24 inside the if...then label. 
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Figure 18: Output of the profiler. 

The Figure 18 illustrates the output of the proposed profiler. The top part of the listing enumerates the IR 
level statistics for the two functions of the studied kernel (lines 1-5 and lines 6-13). The bottom (lines 15-
20) depicts the IR level instruction classification statistics. More details about the classification process will 
be given in the next subsection. 

5.4 Results 

5.5.1 Approach 

To generate the LLVM IR bitcode from the OpenCL kernels, we use the clang compiler version 12.0.0. We 
also use the opt tool from the LLVM toolchain. To perform the IR instruction classification, we accordingly 
focus on the Instruction class of the LLVM codebase. Finally, we apply our profiler to the Polybench-ACC 
benchmark suite [5] and more particularly in the linear algebra OpenCL applications. Each application 
consists of 1 or 2 OpenCL kernels (annotated as K1 or K2 hereafter). 

The goal of this profiler is to classify different OpenCL kernels wrt. the number of IR-level instructions. 
Therefore, the next step was to classify each IR opcode to five distinct categories. Obviously, each category 
contains opcodes with similar or almost similar power profiles. As part of this work, the following categories 
were used (we will extend the categorization as part of WP4 activities):  

The type1 group includes all the simple ALU operations e.g., additions, subtractions, and bitwise operations. 
type2 group contains the long-latency, thus more power consuming, ALU operations like multiplications 



   

 

48 

 

and divisions instructions. The type3 group consists of the load-store memory operations and the type4 
includes all the control instructions e.g., branches, function calls, function returns etc. Finally, there is a last 
category (NoType) with all the remaining LLVM IR instructions. 

5.5.2 Kernel Characterization 

This section presents our profiler-based characterization of the following OpenCL applications from the 
Polybench-ACC [POLY] benchmark suite: 2mm, 3mm, atax, bicg, doitgen, gemm, gemver, mvt and syr2k. In 
total, 17 OpenCL kernels were used. Our goal, as explained, was to create groups of similar kernels 
depending on their IR instruction mix, thus groups with similar power behavior. Our classification algorithm 
works as follows: two kernels are grouped together if the difference in the same type instructions is lower 
than a predefined threshold. 

In the current implementation, we set two threshold values: 10% and 20%. Table 1 contains the extracted 
kernel groups. As we can see from Table 1, when the first threshold value is enforced, we end up with 12 
groups, while only eight groups are extracted for the second threshold value. 

Table 1: Kernel classifications. 
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Figure 19: LLVM IR instructions classification. 

Finally, Figure 19 presents the whole range of the profiler outputs for each OpenCL application and kernel 
(shown in the horizontal axis). The y-axis shows the absolute values of the number of instructions of each 
instruction type. It is obvious from Figure 19 that specific kernels (belonging to the same or to different 
applications) exhibit the same behavior (equal or almost equal number of instructions per instruction type) 
e.g., the 2mm k1 and gemm k1 kernels, while other kernels show different instruction statistics (e.g., 
doitgen k2 and 2mm k2), thus different run-time behaviour (to be confirmed in WP4).  
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6. Component Matlab Modeling Demonstrator  

As a result of Task 2.4, a Matlab program based demonstrator of the component modelling methodology 
is described in this section. All the KPIs currently identified within the CPSoSAware project have been 
defined using the methodology discussed in Section 2 and modelled in MATLAB. They are then included in 
a library of modeled KPIs that is available to the project members in the internal project repository. We 
currently have 18 KPIs modelled in the library.  We do not consider KPIs as static thing, but as a dynamic 
thing, that thus will evolve and can change during whole duration of the project. It is thus possible that few 
KPIs could be added or modified in the near future. The updates would be anyway made immediately 
available in the same repository. 

We selected to use MATLAB to model the KPIs for several reasons. The first, is that, per our definition, KPIs 
are defined with mathematical formalism. The use of a formalism suitable for defining mathematical 
function was the most natural choice. The second is the flexibility and easy to interface capability of 
MATLAB. MATLAB programs can be written in a very flexible and very powerful language, and they can be 
executed also on openly available tools such as octave. Furthermore, KPIs could require the evaluation of 
complex mathematical functionalities to be measured. MATLAB is very suitable for these tasks. Finally, 
programs written in MATLAB can be easily interfaced with other components of a tool chain, since they can 
access and parse easily text files generated by other programs.  

The modelling of KPIs starts from the mathematical definition obtained after the iterative process of KPIs 
definition, described in Section 2. After the confirmation of correctness of such definition, each KPI was 
then modelled with the language used by the MATLAB tool. Specifically, each KPI model is defined as a 
function in MATLAB. Each function takes the parameters needed to compute the specific KPI, a specific 
threshold where it is needed, and returns the computation of the KPI itself, as defined in the collection 
phase.  

The library of all modelled KPIs is available for each partner in the internal repository of the project and will 
be made publicly available on the project website together with this deliverable. In the rest of this section, 
we report as example the code of few KPIs.  

Collision_Risk KPI (Figure 20). The definition of Collision Risk is the maximum risk of collision between the 
current car and all the neighbouring cars. This value depends on the distance between cars and a parameter, 
called collision factor, that can be determined empirically or analytically. The component that models this 
KPI is a function that computes the Collision Risk between each of the surrounding cars. Each models 
contains, in the form of comments within the code, the definition of the KPI and the way in which the 
function has to be used.  
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Figure 20: MATLAB for Collision Risk KPI modeling. 

Data_Integrity_Component KPI (Figure 21). This KPI checks the presence, in each module, of a component 
to enforce data integrity. This is verified by verify that, for all the modules in the system, the matrix storing 
the presence of a component returns the value true. 

 

Figure 21: MATLAB for Data Integrity Component KPI modeling. 
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Threat_Severity KPI (Figure 22). This KPI measures the severity of a threat, defined as the normalized 
maxium impact that a threat could have. The normalized value of the threat severity is computed 
multiplying the threat severity with the impact that the threat can have on the requirements, divided by 
the maximum value that the impact can have. All these values have to be stored in a matrix for each threat. 

 

Figure 22: MATLAB for Thread Severity KPI modeling. 

Repeatability_of_Algorithm_speed KPI (Figure 23). This KPI monitors that the algorithm speed under the 
same conditions is highly similar. It does so by verifying that the absolute difference between execution 
times of the same algorithm is smaller than a given threshold. 

 

Figure 23: MATLAB for Repeatability of algorithm speed KPI modeling. 
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7. Conclusions 

 

This deliverable described the outcomes of Task 2.3 and 2.4 of the CPSoSAware project. A key 
demonstrated outcome from Task 2.3 was a new version of AlmaIF, a hardware component interface that 
is essential in integrating hardware accelerators to common open heterogeneous platform that is utilized 
in the CPSoSAware project. The work on this component will continue in Task 3.2 and Task 3.6 where it will 
be extended and adapted for the OpenCL platform optimization. 

The document also presented metadata for various hardware and software components that are going to 
be used in the pilot demonstrators as a result of Task 2.3 and will be used in WP4 for driving the adaptation 
process. The KPI collection process was outlined and examples given on how security related aspects were 
given. Finally, a new profiling tool, as planned in Task 2.3, was demonstrated. It is capable of analysing 
OpenCL kernel instruction mixes and thus will be usable in providing feedback to the soft core generation 
automation that is being created in Task 3.6.  
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