

D4.4 PRELIMINARY VERSION OF CPSOS SIMULATION TOOLS AND
TRAINING DATA GENERATION

Authors IBM, UoP, I2Cat, ROBOTEC, CRF

Work
Package

WP4 CPSoSaware System Layer Design and adaptation of dependable CP(H)SoS

 Abstract

This report constitutes the output of task T4.4 “CPSoS Simulation Tools and
Integration” and describes a preliminary version of CPSoSaware simulation and
training block (SAT).

Funded by the Horizon 2020 Framework Programme
of the European Union

Ref. Ares(2021)2407016 - 08/04/2021

Preliminary Version of CPSoS Simulation Tools and Training Data Generation

1

Deliverable Information

Work Package WP4 CPSoSaware System Layer Design and adaptation of dependable CP(H)SoS

Task T4.4 CPSoS Simulation Tools and Integration

Deliverable title D4.4 Preliminary Version of CPSoS Simulation Tools and Training Data Generation

Dissemination Level PU

Status Final

Version Number 1.00

Due date M14

Project Information

Project start and
duration

01/01/2020 – 31/12/2022, 36 months

Project Coordinator

Industrial Systems Institute, ATHENA Research and Innovation Center

26504, Rio-Patras, Greece

Partners 1. ATHINA-EREVNITIKO KENTRO KAINOTOMIAS STIS TECHNOLOGIES TIS PLIROFORIAS,
TON EPIKOINONION KAI TIS GNOSIS (ISI)
 the Coordinator

2. FUNDACIO PRIVADA I2CAT, INTERNET I INNOVACIO DIGITAL A CATALUNYA (I2CAT),

3. IBM ISRAEL - SCIENCE AND TECHNOLOGY LTD (IBM ISRAEL

4. ATOS SPAIN SA (ATOS),

5. PANASONIC AUTOMOTIVE SYSTEMS EUROPE GMBH (PASEU)

6. EIGHT BELLS LTD (8BELLS)

7. UNIVERSITA DELLA SVIZZERA ITALIANA (USI),

8. TAMPEREEN KORKEAKOULUSAATIO SR (TAU)

9. UNIVERSITY OF PELOPONNESE (UoP)

10. CATALINK LIMITED (CATALINK)

11. ROBOTEC.AI SPOLKA Z OGRANICZONA ODPOWIEDZIALNOSCIA (RTC)

12. CENTRO RICERCHE FIAT SCPA (CRF)

13. PANEPISTIMIO PATRON (UPAT)

Website www.cpsosaware.eu

http://www.cpsosaware.eu/

Preliminary Version of CPSoS Simulation Tools and Training Data Generation

2

Control Sheet

VERSION DATE SUMMARY OF CHANGES AUTHOR

0.1 Initial draft Evgeny Shindin

0.2 All chapter with simulator tools added All involved Author
Partners

0.3
Orchestrator and Data aggregator input
provided

IBM

0.9 Final version IBM

1.0
Reviewed version that addresses internal
review comments

IBM

 NAME

Prepared by IBM

Reviewed by UoP, USI, ISI

Authorised by ISI

DATE RECIPIENT

30 March 2021 Project Consortium

8 April 2021 European Commission

Preliminary Version of CPSoS Simulation Tools and Training Data Generation

3

Table Of Contents

1. Executive Summary .. 6

1.1 Structure of Document ... 6

1.2 Related Documents and Tasks .. 6

1.3 Definitions and Acronyms ... 7

2 Introduction and state of the art (IBM) ... 9

2.1 Co-simulation methods and tools .. 9

2.1.1 Methods .. 9

2.1.2 Functional Mock-up Interface (FMI) .. 9

2.1.3 Tools .. 10

2.1.4 Summary ... 10

2.2 Storage DB types ... 10

2.2.1 Relational databases ... 11

2.2.2 Key-value stores .. 11

2.2.3 Document databases .. 12

2.2.4 Graph databases ... 13

2.2.5 Object databases .. 13

2.2.6 Summary of Storage DB types.. 14

3 Simulation and Training Block Architecture .. 15

3.1 Architecture overview ... 15

3.2 Integration and Storage approach ... 16

3.3 Simulation workflow ... 18

4 Simulation and Training Block Components ... 20

4.1 Orchestration tool ... 20

4.2 Data storage and transformation services ... 24

Preliminary Version of CPSoS Simulation Tools and Training Data Generation

4

4.3 Inter and Intra Communication Simulators ... 25

4.3.1 Intra – Communication Simulator .. 25

4.3.2 Inter – Communication Simulator .. 29

4.4 CPSoS HW-SW Simulators ... 31

4.5 CPSoS Use-case dedicated simulators ... 32

4.5.1 Simulator for ADAS/AV systems research ... 32

5 Simulation and Training Block Interfaces .. 39

5.1 Orchestrator interfaces... 39

5.2 Data storage and transformation services interfaces ... 41

5.2.1 Low-Level Instance Base Interface ... 41

5.2.2 Class definition interface .. 41

5.2.3 Data definition interface .. 43

5.2.4 Data management interface .. 45

5.2.5 Ontology Alignment and Equivalence Rules .. 46

6 Conclusion ... 49

Preliminary Version of CPSoS Simulation Tools and Training Data Generation

5

List of figures

Figure 1: SAT block architecture. .. 15

Figure 2: Two-Layered model.. 17

Figure 3: Example of model in the intermediate format ... 17

Figure 4: CPSoSaware CI/CD workflow ... 21

Figure 5: Architecture of data storage and transformation service ... 24

Figure 6: NS-3 Basic Simulation Model ... 26

Figure 7: NS-3 in CPSoSaware ... 29

Figure 8 SUMO Highway Scenario .. 29

Figure 9: OMNET++ propagation example ... 30

Figure 10: Tool interface ... 30

Figure 11: Proxim's utilization visualization of a minimal co-processor architecture. The redness indicates
the level of utilization (so far) by the program. ... 31

Figure 12: Basic structure of CARLA simulator for AV/ADAS research ... 32

Figure 13: GNSS attributes in CARLA simulator as specified in the GNSS sensor documentation. 35

Figure 14: LIDAR attributes in CARLA simulator as specified in the LIDAR sensor documentation. 36

Figure 15: Camera attributes in CARLA simulator as specified in the camera sensor documentation. Please
note that camera has also camera lens distortions options as separate attributes group. 36

Figure 16: Inertial Measurement Unit (IMU) attributes in CARLA simulator as specified in the IMU sensor
documentation... 37

Figure 17: CI/CD Orchestrator Control API ... 39

Figure 18 NS3 Simulation Interface .. 40

Figure 19: API for namespace management .. 41

Figure 20: API for class definitions management ... 43

Figure 21: Schema management API .. 45

Figure 22: Data management API ... 46

Figure 23: Rules management API .. 48

Preliminary Version of CPSoS Simulation Tools and Training Data Generation

6

1. Executive Summary

This report constitutes the first output of task T4.4 “CPSoS Simulation Tools and integration” and describes
the proposed architecture being considered by CPSoSaware for the simulation and training block. The SAT
block functionality consists of two main functions: i) performing joint simulation, and ii) data storage for
storing simulation data. We reviewed co-simulation as a method for performing joint simulation but come
to the conclusion that this methodology is too complex for our needs and propose to use data
transformation to the CERBERO Interoperability Framework format (CIF) instead. We compared and
contrasted several storage DB types and suggest that a relational database would be the best choice for
the simulation data. We presented the design of the architecture of the simulation and training (SAT) block
which is driven by requirements to its functionality. We described this architecture and how it relates to an
Integration and Storage approach for integrating different and diverse simulators that use different
modelling paradigms and languages, and how it supports the Simulation Workflow. We then described each
of the SAT and then described the SAT interfaces including the orchestrator and data storage interfaces.

The proposed architecture allows the project to achieve objective Ο4.2 “Implement CPSoSaware Simulation
and Training block that constitutes the basic testing and training data extraction environment for the design
and redesign procedures performed in the MRE System Layer component.”

1.1 Structure of Document

This document is structured into six major sections:

• Section 1 introduces the document, outlines its structure, and identifies terms and acronyms used
across the document.
• Section 2 provides the general introduction to the CPSoSaware simulation and training (SAT) block
functionality and discuss state of the art co-simulation and data storage approaches that will be
considered during design of SAT block.
• Section Error! Reference source not found.3 describes SAT block high-level architecture, data
integration and storage approach considered during SAT block design and generic simulation workflow
that utilizes different architecture elements.
• Section 4 discusses main SAT block components including orchestrator, data storage and
transformation services and different simulators that used in the project.
• Section 5 describes SAT block interfaces.
• Section 6 concludes the document.

1.2 Related Documents and Tasks

This document is the first output of Task 4.4 “CPSoS Simulation Tools and Integration”, that is scheduled to
be performed during M6-M28 of the project. The final deliverable of Task 4.4 is D4.9 “Final Version of CPSoS
Simulation Tools and Training Data Generation” will continue the current document. The choice of tools
and methodologies for simulation and integration is partially based on the output of Task 1.1 “SoA analysis,
technological selection and benchmarking of best practices” that is described in D1.1 “Supportive,
Motivating and Persuasive Approaches, Tools and Metrics”. Intra- and inter-communication simulation
models developed as part of Task 2.2 “CPS Inter and Intra Communication Models” will be used by
corresponding simulators discussed in section 4.3.1, 4.3.2 that in connection with use-case specific
simulators discussed in section 4.5 will generate data required for Task 4.2 “CPSoSaware Networking for
reliable communication and cooperation between CP(H)SoS”. Simulation models of HW and SW

Preliminary Version of CPSoS Simulation Tools and Training Data Generation

7

components provided as output of Task 2.3 “CPS Models for HW & SW Components” will be used by HW
and SW simulators discussed in section 4.4 in order to generate data required to perform HW-SW
partitioning optimization in the Task 4.4. Moreover, properties of HW and SW components estimated
during these simulations will be included to the models of these components and to the library of the HW
& SW components will be provided as output of Task 3.6 “Development of HW-SW Library with reliable
Components” in the deliverable D3.6 “Library of SW and HW components”. Furthermore, data generated
by different simulators will be re-used in other tasks of WP3 “Model based CP(H)S Layer Design and
Development supporting Distributed Assisted, Augmented and Autonomous Intelligence” in order to
perform training and testing of different AI algorithms that will be developed as part of this WP.

1.3 Definitions and Acronyms

The following list includes the most relevant acronyms and recurring definitions used in the document:

Acronym / Term Definition
ACID Atomic, Consistent, Isolated, Durable
ADAS Advanced driver-assistance systems
AV Autonomous Vehicle
CAM Cooperative Awareness Messaging
CERBERO Cross-layer modEl-based fRamework for multi-oBjective dEsign of

Reconfigurable systems in unceRtain hybRid envirOnments. Horizon
2020 EU RIA project, grant agreement No. 732105

CIF CERBERO Interoperability Framework (CIF)
CPHSoS Cyber-Physical-Human System of Systems
CPS Cyber-Physical System
CPSoS Cyber-Physical System of Systems
CS Co-Simulation
DB Database
DBMS Database Management System
ETSI European Telecommunications Standards Institute
FMI Functional Mock-Up Interface
FMU Functional Mock-Up Unit
FMI Functional Mock-Up Interface
FMU Functional Mock-Up Unit
FPGA Field Programmable Gate Array
GNSS Global Navigation Satellite System
GPS Global Positioning System
GPU Graphics Processing Unit
IMU Inertial Measurement Units
JSON Javascript Object Notation
LiDAR Laser Imaging, Detection and Ranging
ME Model Exchange
OEM Original Equipment Manufacturer

Preliminary Version of CPSoS Simulation Tools and Training Data Generation

8

RADAR Radio Detection and Ranging
RAM Read-only Memory
RDBMS Relational Database Management System
RGB Red, Green, Blue
ROS Robot Operating System
SAT Simulation and Training
SQL Structured Query Language
TCP Transmission Control Protocol
V2X Vehicle to X where X is one of several possible conversation partners
XML eXtended Markup Language
YAML Yet another Markup Language

Preliminary Version of CPSoS Simulation Tools and Training Data Generation

9

2 Introduction and state of the art (IBM)

Driven by the project requirements one can identify two key functions that should be performed by
SAT block: SAT block should be capable to perform joint simulation across different and diverse simulators
and store simulation data in a way that will allow querying the data and obtaining a consistent dataset, that
will be used in order to train ML algorithms. Thus, design of SAT block architecture starts from reviewing of
the state-of-the-art approaches that are used to perform joint simulation and storage DB types that can be
utilized to store simulation data.

2.1 Co-simulation methods and tools

It is challenging to develop CPSoSs, which are hybrid systems made up of loosely-coupled subsystems
from different domains that operate together with a common purpose. The co-simulation methodology is
to model each of the subsystems in a separate simulator. The main idea is that each subsystem has its own
set of tools for which are specialized for the subsystem’s domain. These may include programming
languages, user interfaces, workflows, and more, which are well-established for modeling these subsystems.
The modeling can then be done for each subsystem on its own, without concern for the coupled problem.

The simulators are then coupled together into a joint simulation, where each subsystem is run as a
black box. The co-simulation is responsible for starting, stopping, and coordinating all of the simulators, as
well as providing a mechanism for them to communicate and read each other’s state.

2.1.1 Methods

Each subsystem can be represented digitally as a model. The model represents a dynamical system which
relates to a set of physical laws, and a control system of some kind. There are domain specific tools to
develop the models for each subsystem. The models can be executed and can communicate using standard
interfaces. The standard supported by the most tools, is the Functional Mock-up Interface, described in the
next section.

2.1.2 Functional Mock-up Interface (FMI)

The most common standard interface for computer simulations is known as Functional Mock-up Interface
(FMI) (https://fmi-standard.org/). FMI is an open standard whose goal is to support the exchange of models
(Model Exchange or ME) as well as the exchange of model data (Co-Simulation or CS) using a standard
format. MEs and CSs are the two types of Functional Mock-up Units (FMU).

ME units represent the dynamic systems as sets of differential equations. These are imported into a tool in
one batch, and connects the FMU to a numerical solver, which sets and computes the internal state and
step size. Figure 1 shows the output flow of FMUs.

On the other hand, CS units each have their own solver. When they are imported, the tool sends requests
to the FMU to step forward a given time, and then reads the output.

The tools discussed in section 3.1.3 below all support FMI, either version 1.0 or version 2.0.

https://fmi-standard.org/

Preliminary Version of CPSoS Simulation Tools and Training Data Generation

10

Figure 1 FMUs exchanging data. The output (y) of one simulator becomes the input (u) of another.

2.1.3 Tools

The FMI standards organization provides a list of tools that support the FMI standard for import and export
of FMUs. This includes both version 1.0 and version 2.0 of the standard, as well as ME and CS FMUs. The
list can be found here: https://fmi-standard.org/tools/.

2.1.3.1 IBM Engineering Systems Design Rational Rhapsody

IBM Engineering Systems Design Rational Rhapsody (https://www.ibm.com/products/systems-design-
rhapsody) is a family of products for modelling and systems design that supports FMI version 1.0. It is a
commercial system that includes collaborative design and testing using several modelling languages such
as SysML.

2.1.3.2 INTO-CPS

The Integrated Toolchain for Cyber-Physical Systems (INTO-CPS) (https://into-cps-
association.readthedocs.io/en/latest/tools.html) is an open-source collection of tools developed to aid in
the development of CPSs. Included are desktop and cloud applications for configuring and orchestrating
co-simulation scenarios, Modelio, “a combined UML/BPMN modeler supporting a wide range of models
and diagrams.” Maestro (https://github.com/INTO-CPS-Association/maestro), the co-simulation
framework of INTO-CPS supports FMUs conforming to both version 1.0 and version 2.0 of the FMI standard.

2.1.4 Summary

The main benefit of co-simulation is the support of common, standard interfaces for simulating models of
dynamical systems. The most represented standard for co-simulation is FMI. Unfortunately, several of the
modelling tools used by the CPSoSaware project do not support this standard. Given the heterogeneity and
diversity of the simulators, building additional components in order to support FMI would be cumbersome
and not efficient. Therefore, the use of co-simulation methods would be too complex and inefficient as the
simulators are too different and work in different scales. Thus, the use of a data transformation approach
instead of co-simulation approach appears to be the best to adopt. To do this we utilize the concept of
CERBERO Interoperability Framework (CIF) that allows to connect different tools using semantic data
transformation.

2.2 Storage DB types

Data can be stored persistently in a database management system (DBMS). These systems allow for the
creation, retrieval, update and deletion of data by different computers in the system. There are many types

https://fmi-standard.org/tools/
https://www.ibm.com/products/systems-design-rhapsody
https://www.ibm.com/products/systems-design-rhapsody
https://into-cps-association.readthedocs.io/en/latest/tools.html
https://into-cps-association.readthedocs.io/en/latest/tools.html
https://github.com/INTO-CPS-Association/maestro

Preliminary Version of CPSoS Simulation Tools and Training Data Generation

11

of DBMSs, with different advantages and disadvantages. This rest of this section is divided into subsections,
of which the first five each describe a different class of DBMS, its strengths and weaknesses, with one or
two examples. The final subsection summarizes the state of the art.

2.2.1 Relational databases

Relational database management systems (RDBMS) represent data in the form of tables consisting of rows
and columns, which is called the relational model. Each table represents a collection of similar entities, with
each row representing a single entity and each column representing an attribute of those entities. Each
row in each table represents a data record and is represented by a unique key. Data from the tables can be
combined, filtered, joined and otherwise manipulated using relational operators. This rigid structure is
suitable for structured data that can be described by a separate database schema.

The strengths of RDBMSs include:

1. Support for complex queries using SQL which is standard across vendors and versions,
2. Support for high performance indexed queries, where the index can be on any column,
3. Support for normal forms for consistency,
4. Support for ACID transactions.

The weaknesses of RDBMSs include:

1. Heavy resource consumption,
2. The relational model can be restricting,
3. Inserts and updates can be slow,
4. Not all data fits the relational model.

While RDBMSs have been around since the 1970’s, they are still widely used and actively developed. There
are many popular implementations of RDBMSs which are constantly seeing improved performance and
new features. Some popular implementations:

1. Oracle,
2. IBM DB2,
3. MySQL,
4. Microsoft SQL Server.

2.2.2 Key-value stores

Key-value stores represent data as associative arrays. Each record consists of a key and a value. The key is
usually an integer or something that can be easily mapped to an integer using a hashing function, while the
value can be any type. In fact, the types of the values can be simple such as strings, compound collections,
and need not be the same from record to record. Often the database is not divided into tables, although it
can be. Associative arrays are also known as dictionaries, maps, or hashtables, and are suitable for
unstructured data, with no set schema.

The strengths of key-value stores are:

1. Database records need not conform to strict schema,
2. Rapid retrieval of single records,

Preliminary Version of CPSoS Simulation Tools and Training Data Generation

12

3. Very memory efficient.

The weaknesses of key-value stores are:

1. Poor support for complex queries,
2. Poor support for transactions,
3. Some implementations store in RAM only,
4. No standard query method.

The recent trend of NoSQL databases has caused a upsurge in usage as well as number of implementations
of key-value stores. In particular, large, distributed cloud and edge applications often find a use for one or
more key-value store implementations. Some of the more popular implementations include:

1. Redis,
2. Memcached,
3. Berkeley DB,
4. CouchDB.

2.2.3 Document databases

Document databases represent data in the form of documents. The documents stored in document
databases are generally semi-structured. This means that they have a schema, but it is part of the document,
in such forms as XML tags or JSON keys. This allows for more complicated queries than key-value stores,
while allowing for some information to be represented that is not constrained by a predetermined schema.
These documents are often in specific formats that support including schema information such as XML,
JSON, or proprietary formats. Document databases have recently become popular as part of the NoSQL
trend.

The strengths of document databases include:

1. Documents are not separated into tables, which fits better with object-oriented programming
where one object may be stored in several tables,

2. Documents do not have to fit a standard schema, which allows for additional information to be
managed without upfront planning and design,

3. Documents can be stored in a format that is easily generated and parsed such as XML, YAML, or
JSON.

The weaknesses of document databases include:

1. Does not have as high performance as relational databases for highly structured data,
2. Has higher memory requirements than key-value stores.

Document databases have become much more popular as cloud and mobile computing have introduced a
much more heterogeneous deployment architecture to many applications. Furthermore, they often take
advantage of newer technologies, data formats, and other modern features that are difficult to implement
in key-value stores and RDBMSs. Some popular implementations of document databases include:

1. MongoDB,
2. Elasticsearch,

Preliminary Version of CPSoS Simulation Tools and Training Data Generation

13

3. CouchDB,
4. Cloudant.

2.2.4 Graph databases

Graph databases treat the relationship between different data to be of primary interest. Each datum is
represented as a node in a graph structure, with arcs representing a relationship between nodes. The
underlying storage mechanism is usually one of a key-value store, a document database, or even an RDBMS.

There are many types of data that can represented as graphs. For example, social network data, which
connects individuals who have a relationship of interest, or consumption graphs, which connect consumers
with products and payments.

The strengths of graph databases include:

1. Relations between data points are explicit, in the form of arcs,
2. Support for graph queries and analysis such as whether two nodes are connected or the shortest

path,
3. Very good performance and scalability,
4. Some support for standardized query language such as GraphQL, Gremlin or SPARQL.

The weaknesses of graph databases include:

1. Not useful for data that is not network-like,
2. No single standard for query language,
3. Not good for bulk operations on many data points with one query.

For some specific applications noted above, graph databases are quite useful. Some popular graph
databases include:

1. SAP Hana,
2. Oracle Property Graph,
3. Amazon Neptune,
4. Neo4j.

2.2.5 Object databases

Object databases are designed to support persistence of for applications built using object-oriented
development. The main motivation is what is known as the object-relational impedance mismatch, where
the application programming environment represents data as objects in source code, which is difficult to
manage using the relational model. Object databases emerged in the 1980’s as this problem became
apparent.

The strengths of object database include:

1. Objects can often be retrieved without explicit queries, by following pointers from other objects,
2. Object storage can be more efficient since the data model of the application matches the database.

This is especially so for complex object structures,
3. They often support ACID transactions.

Preliminary Version of CPSoS Simulation Tools and Training Data Generation

14

The weaknesses of object database include:

1. There is no standard query language,
2. There is no support for complex queries.

Recently, several open source object databases have emerged, renewing the popularity of this paradigm.
Some popular object databases include:

1. Intersystems Caché
2. Actian
3. Db4o
4. ObjectStore.

2.2.6 Summary of Storage DB types

Each of the storage types discussed above has its advantages and disadvantages. Depending on the nature
of the storage requirements and the applications using it, a different type may prove to be the most
applicable. RDBMSs are suitable for most general-purpose data storage with heterogeneous applications
and many complex queries, especially when the data is highly structured. Key-value stores are a low
overhead and low memory usage option for simple store and retrieve applications. Document storage
databases are a more flexible solution than RDBMSs when the data structure is less rigid, although they are
not as strong on complex queries. Graph databases work especially well when the relations between data
points are of primary interest. Object databases provide high performance with minimal code for object-
oriented development. Therefore, the relational database type appears to be the best choice.

Preliminary Version of CPSoS Simulation Tools and Training Data Generation

15

3 Simulation and Training Block Architecture

3.1 Architecture overview

The design of the architecture of the simulation and training (SAT) block is driven by requirements to its
functionality. In particular the SAT block should:

• Provide integration and orchestration of different and diverse simulators in an extendable manner.
That is, the architecture concept should allow connecting new simulators to the SAT in a plug-and-
play manner, without any changes to the SAT itself.

• Provide data uniform storage of the simulation data that allows the generation of training/learning
data sets for CPSoSaware AI components. The generation process should allow spanning data
produced by different simulators and/or during different simulations into a single data record.

Following these requirements, CPSoSaware developed an extendable architecture of SAT block, presented
in Figure 2.

Figure 2: SAT block architecture.

According to this architecture, the SAT block consists of Storage, Orchestration, and Integration Services.
Various simulators should implement an Integration agent that allows the establishment of a connection
between simulator and aforementioned services. SAT block provides 3 different interfaces:

• Control interface allows to orchestrator to control simulation process. Different simulators have
different abilities to control the simulation, so the implementation of this interface should be based
on the following principles: first, the orchestration block should implement the most advanced
version of the interface that includes all possible commands that could be supported by at least
one of the connected simulators and be required for the joint simulation and data generation
scenarios driven by CPSoSaware use-cases. Second, Individual integration agents should
implement only a subset of the advanced interface supported by the respective simulator. Thus,

Preliminary Version of CPSoS Simulation Tools and Training Data Generation

16

the design of the advanced control interface will be performed in the iterative manner, driven by
properties of the simulators that should be connected to SAT block. Once a simulator is connected
to the SAT block its integration agent should expose the control features supported by the
simulator. Such behavior allows the checking of the feasibility of orchestration scenarios and does
not issue commands that are not supported by the particular simulator. Detailed design of the
control interface is related to the CPSoSaware orchestration methodology that will be developed
in Task 2.5.

• Schema interface allows the simulators to describe requirements of input and output data formats,
required and optional data properties and correct types of their values. Once the simulator is
connected to the SAT blocks its integration agent should send a schema for all data that the
corresponding simulator should exchange with SAT block. Schema files are files in JSON formats
that will be described in Section 5. Schema interface is required to enable uniform storage and data
integration approach that will be discussed in Section 3.2.

• Data interface is a set of endpoints that allows sending the data from the simulator to the SAT block
and from SAT block to the individual simulators. As previously described, all data formats should
satisfy corresponding schemas. Initial description of data interface will be provided in Section 5.

SAT block consists of Orchestrator and Data Storage and Transformation services. Initial design of
Orchestrator tool will be described in Section 4.1 and initial design of Data Storage and Transformation
services will be described in Section 4.2. Different simulators that will be used in the CPSoSaware project
and can be connected to SAT block discussed in Sections 4.3, 4.4, 4.5.

3.2 Integration and Storage approach

Integration of the different and diverse simulators is traditionally a complex engineering problem. It is
characterized by several issues such as the usage of different modelling paradigms or languages and
requires extreme effort to create and maintain the necessary integration infrastructure. This is particularly
true in the CPS environment where you need to combine heterogeneous components suitable for the
different aspects of the CPS. These motivations lead the designer to look for semantic integration of tools,
and ontology-based integration is particularly suitable to the case.

The term “ontology” derives from ancient Greek “onto”, which means “being” and logos, which means,
“discourse”. Ontology -- or roughly the "science of stuff" and how it is represented -- used to be a rather
obscure branch of philosophy. It still is in some cases, but it is also an important and growing area of
computer science and the web of things (WoT). Ontology has also assumed other relevant meanings, such
as:

 “A formal shared and explicit representation of a domain concept.”

or:

“A method for formally representing knowledge as a set of concepts within a domain, using a shared
vocabulary to denote the types, properties and interrelationships of those concepts.”

or:

“A formal way to describe taxonomies and classification networks, essentially defining the structure of
knowledge for various domains.”

Preliminary Version of CPSoS Simulation Tools and Training Data Generation

17

Ontology-based data integration involves the use of ontology(s) to effectively combine data or information
from multiple heterogeneous sources. Maintaining an ontology design facilitates keeping track of the terms
and ensures integration efforts quickly get up to speed.

CPSoSaware consortium retains the idea that model-2-model transformation would not necessarily be the
main mean of communication between tools (also, the feasibility of having fully automated model to model
transformations from the system of system level down to the hardware is unlikely). Instead, each tool will
manage its own model(s), and the intermediate representation will be used to exchange “cross-layers” and
“cross-models” information between tools.

The intermediate format is, therefore, necessary to achieve the mediation between the application's class
model conceptualization and the common domain ontology conceptualization since objects in the original
format cannot be handled directly in the framework. Thus, CPSoSaware follows the Resource Description
Framework (RDF)-like meta-model underlying common ontology. In particular CPSoSaware utilizes
intermediate format that original developed in IBM for the semantic middleware (SEMI), and then re-used
as intermediate format for the CERBERO Integration framework (CIF). This format based on the two-layered
model structure that separates instances, properties and aggregations (lower level) from classes (upper
level) (see Figure 3).

Figure 3: Two-Layered model

Each instance in this model represents a thing that possesses one or more properties within corresponding
namespaces. The property itself possess a value that can be either simple (integer, float, string, etc.) or
object (another instance). Aggregations are special instances that serve to represent one-to-many relations
between instances, so each aggregation can “contain” several instances. An example of instance-level CIF
model is presented on Figure 4.

Figure 4: Example of model in the intermediate format

Preliminary Version of CPSoS Simulation Tools and Training Data Generation

18

Classes are implemented using the classification-by-property paradigm [20]. That is, any instance that
possesses some predefined set of properties becomes an instance of the corresponding class. This
predefined set of properties denoted as a class definition. The set of class definitions related to the specific
namespace form ontology.

Ontology helps with revealing meaning and relations of each property from the whole graph by referring
to a property by its name. All properties relevant to the model are present in the ontology. Ontologies can
be either simplified (i.e. system model features only a subset of all properties of the real system), or full
ontology where all properties in the system model are presented in the ontology. To enable interoperability
between different tools and preserve the integrity of holistic model mappings between ontologies are
provided. These mappings expressed through equivalence rules between classes and define relations
between instances, classes and properties coming from different namespaces. As a result, data storage
contains a single model combined from different viewpoints provided by different tools.

3.3 Simulation workflow

In this section we discuss generic simulation workflows where different components of simulation and
training block are involved.

A simulation workflow starts from the preparation of the simulation script and configuration data. The
simulation script is passed to the orchestrator in order to define the orchestrator workflow which defines
the type, number and order of simulation components/nodes that will be executed during simulation
process. Configuration data stored by data storage and transformation service according to corresponding
schemas and should be provided before the simulation. In order to invoke the simulation process, the user
provides the name of the simulation script and identification of the configuration data.

The simulation process starts from preparation of all simulation components. When a component is ready,
the integration agent of the component checks if all input and output data schemas are already registered
by data storage and transformation service and performs the registration as necessary. In order to
distinguish data produced by a single simulation across several different simulators / simulation nodes
integration agents, the orchestrator and data storage services support the simulation id property. The
simulation id allows distinguishing the data produced by one simulation script run from other runs. When
the orchestrator launches a new simulation, it requests a new simulation id from the data storage service.
When the orchestrator invokes simulation in the one of available simulation nodes it sends the current
simulation id to the integration agent of this node and the integration agent sends simulation id together
with all data produced during the simulation run. Data storage and transformation service also stores a
reference to the simulation script that invoked run of the simulation with specific id.

If during the simulation process output data produced by one simulation node should be transformed to
the input data of another simulation node, then corresponding transformation rules should be prepared
before the simulation. These transformation rules should be written using equivalence rules syntax
discussed in section 5.2.5. Written rules submitted to the ontology alignment block of the data storage and
transformation service allow to perform data transformation in background. Once the output simulation
data are passed and stored in the data storage service this data could be retrieved in a different format as
input to other simulation nodes. All work required to transform the data from one representation format
to another is performed by the data transformation service and is transparent to the end user.

Preliminary Version of CPSoS Simulation Tools and Training Data Generation

19

All data that produced during the simulation workflow is stored by data storage and transformation service
and can be queried/modified or deleted by the end user using API discussed un the section 5.2.4.

Preliminary Version of CPSoS Simulation Tools and Training Data Generation

20

4 Simulation and Training Block Components

4.1 Orchestration tool

As presented in Section 3.1, CPSoSAware incorporates simulators from various domain introducing
significant heterogeneity in various aspects. Therefore, the integration and orchestration of these diverse
simulating environments that will form the end – to – end CPSoSaware platform introduces significant
challenges.

These challenges are to be tackled by the orchestrator, one of the core components of the SAT architecture
that is responsible to apply the continuous integration / continuous deployment (CI/CD) principles of
automatically building and integrating changes as they are committed. In a nutshell, the orchestrator will
be responsible to pick up the latest requirements’ definitions and simulators’ configurations and trigger the
execution of the simulations. The simulations could consist by several simulators integrated through well-
defined interfaces. Each simulator may produce outcomes to be consumed from another simulator
executed sequentially.

Orchestration in the context of CPSoSaware, is based on Jenkins1, an open source & free software that
implements an automation server. It helps automate the parts of software development related to building,
testing, and deploying, facilitating continuous integration and continuous delivery. It is a server-based
system that runs in servlet containers such as Apache Tomcat and it supports several version control tools
(e.g. CVS2, Subversion3, Git4, Mercurial5, etc.) and can execute various build tools commands as well as
arbitrary shell scripts and Windows batch commands.

1 https://www.jenkins.io/
2 https://www.nongnu.org/cvs/
3 https://subversion.apache.org/
4 https://git-scm.com/
5 https://www.mercurial-scm.org/

Preliminary Version of CPSoS Simulation Tools and Training Data Generation

21

Figure 5: CPSoSaware CI/CD workflow

The workflow that will be adopted by the CPSoSaware project is presented in Figure 5. This workflow is
designed based on Jenkins Pipelines6 and there will be configured with a source code management (SCM)
polling trigger.

The SCM system adopted by the CPSoSaware is Git. Git is a distributed version-control system for tracking
changes in any set of files, originally designed for coordinating work among programmers cooperating on
source code during software development. Its design goals include speed, data integrity, and support for
distributed, non-linear workflows (thousands of parallel branches running on different systems).

Jenkins Pipeline is a suite of plugins which supports implementing and integrating continuous delivery
pipelines into Jenkins. A continuous delivery (CD) pipeline is an automated expression of your process for
getting software from version control right through to the users. Every change to the software (committed
in source control) goes through a complex process on its way to being released. This process involves
building the software in a reliable and repeatable manner, as well as progressing the built software (called
a "build") through multiple stages of testing and deployment. Pipeline provides an extensible set of tools
for modeling simple-to-complex delivery pipelines "as code" via the Pipeline domain-specific language (DSL)
syntax. The definition of a Jenkins Pipeline is written into a text file (called a Jenkinsfile) which in turn can
be committed to a project’s source control repository. This is the foundation of "Pipeline-as-code"; treating
the CD pipeline a part of the application to be versioned and reviewed like any other code.

As already imposed, all the involved components in the CPSoSaware platform will be version controlled and
stored in Git Repositories. These components will be:

6 https://www.jenkins.io/doc/book/pipeline/

Preliminary Version of CPSoS Simulation Tools and Training Data Generation

22

• Functional/non-Functional requirements
• Simulation suite code
• Components configurations (raspberry, FPGA, etc.)
• Components codes:

o Bitstreams codes
o Service codes
o Scripts

• Test automation scripts: The testing scripts will verify that the configurations are applied/deployed
successfully in the components and there is communication between them.

Also, a binary repository manager (also known as artifactory) will be configured to store 3rd party libraries
and/or the outcome of the build process. This repository will store binaries such as:

• Customized OS images
• FPGA bitstreams
• Simulation suite binaries

Workflow

The workflow setup as described will be applied in both the integration/simulation and the deployment
phases of the project as well. The workflow execution is distinguished in 4 discrete stages as presented in
Table 1.

1. Main Workflow

As already mentioned, the workflow will be
triggered by SCM polling. When a commit is
performed on Functional/non-Functional
requirements repository then the workflow will be
triggered. The first stage will be executed, which
responsible for collecting the latest requirements.

Preliminary Version of CPSoS Simulation Tools and Training Data Generation

23

2. Simulation Stage

Since the execution of the first stage completes the
flow continuous to the 2nd stage. A trigger (e.g. http
request) will be sent to launch the simulations. At
this phase, a process will wait for all parallel
simulations to finish and sequentially process the
results. Processing the results regards the analysis
on whether the applied configuration of the
simulation met the functional/non – functional
requirements.

3. Configuration Stage

By the completion of 2nd stage, the 3rd stage is
triggered. This stage is a subject of the Continuous
Deployment part of the workflow. At this phase the
configuration for the nodes is available and the
deployment is started.

Stage 3 is a subject of the Continuous Deployment
part of the workflow. The insights of this stage is
not sub

Preliminary Version of CPSoS Simulation Tools and Training Data Generation

24

4. Test Stage

The last stage execution is triggered by the end of
third stage where the test automation scripts will
be executed to verify that environment is working,
and the nodes operate as expected.

Stage 4 is a subject of the Continuous Deployment
part of the workflow. The insights of this stage is
not sub

Table 1 CI/CD workflow stages

4.2 Data storage and transformation services

Initial architecture of data storage and transformation service shown on Figure 6. This architecture is based
on CERBERO interoperability framework architecture and introduces several external and internal APIs that
will be discussed in Section 5.2 and also several functional and storage blocks.

Figure 6: Architecture of data storage and transformation service

The architecture includes 4 logical blocks:

• Instance base block corresponds to the lower layer of two-layered model discussed in the Section
3.2. This block consists of data storage, storage-dependent instance base representation and

Preliminary Version of CPSoS Simulation Tools and Training Data Generation

25

instance base API that will be discussed in Section 5.2.1. Based on discussion provided in Section
2.2 CPSoSaware is considering MySQL database as data storage. Storage dependent
implementation translates queries to the instance base API to SQL requests to the database.
Another function of the storage-dependent implementation is to maintain MySQL database
schema including tables, indexes, and keys. In particular this allows to create new tables each time
when new class definition received by upper-level class definition API.

• Class base block corresponds to the upper layer of the two-layered model. discussed in the Section
3.2. This block consists of class definition storage and two internal APIs: class definition API that
will be discussed in Section 5.2.2 and class base API that serve for the internal purposes. Class
definition storage does not have special requirements for the large data storage and operational
performance and then class definitions stored as JSON files in the service block local file system.

• Data interfaces block builds on top of class base. This block consists of two APIs. Data definition API
extends class definition API with data specific featured and will be discussed in section 5.2.3. Data
API allows to store and query simulation data and will be discussed in section 5.2.4.

• Ontology alignment block is required to perform data transformation from one representation to
another. This transformation is based on equivalence rules that define relations between different
classes. Equivalence rules syntax and API will be discussed in the section 5.2.5. User defined
equivalence rules parsed and checked by parser block and applied to the class base layer by the
enforcement module. Parsed rules are stored in the rules database that similarly to the class
definitions database do not have special requirements for the large data storage and operational
performance and then stored in the local file system in the machine-readable representation.

Data storage and transformation services plays important role in the SAT block, supporting control interface
and providing schema and data interfaces.

4.3 Inter and Intra Communication Simulators

4.3.1 Intra – Communication Simulator

The NS-3 Simulator

A very common practice for network designers to evaluate network performance before deploying in a
real-life deployment, is to use network simulators. A well-accepted network simulation for the research
community, capable of carrying out large scale network simulation, with excellent performance is NS-378910 .
NS-3 is a Discrete-Event simulator (DE) which is an open, extensible network simulation platform, dominant

7 https://www.nsnam.org/
8 Jha, Rakesh Kumar, and Pooja Kharga. "A comparative performance analysis of routing protocols in MANET using
NS3 simulator." International Journal of Computer Network and Information Security 7.4 (2015): 62-68.
9 Mai, Yefa, Yuxia Bai, and Nan Wang. "Performance comparison and evaluation of the routing protocols for MANETs
using NS3." (2017).
10 Amina, Bengag, and Elboukhari Mohamed. "Performance evaluation of VANETs routing protocols using SUMO and
NS3." 2018 IEEE 5th International Congress on Information Science and Technology (CiSt). IEEE, 2018.

Preliminary Version of CPSoS Simulation Tools and Training Data Generation

26

in the research community. NS-3 provides models for simulate network-related use case scenarios, in
respect to different wireless communication technologies.

NS -3 is built using C++ and Python with scripting capability. The ns library is wrapped by Python based on
the pybindgen library which delegates the parsing of the ns C++ headers to castxml and pygccxml to
automatically generate the corresponding C++ binding glue. These automatically generated C++ files are
finally compiled into the ns Python module to allow users to interact with the C++ ns models and core
through Python scripts. The ns simulator features an integrated attribute-based system to manage default
and per-instance values for simulation parameters.

The general process of creating an NS-3 based simulation can be divided into several steps:

1. Topology definition: To ease the creation of basic facilities and define their interrelationships, ns-3
has a system of containers and helpers that facilitates this process.

2. Model development: Models are added to simulation (for example, UDP, IPv4, point-to-point
devices and links, applications); most of the time this is done using helpers.

3. Node and link configuration: models set their default values (for example, the size of packets sent
by an application or MTU of a point-to-point link); most of the time this is done using the attribute
system.

4. Execution: Simulation facilities generate events, data requested by the user is logged.
5. Performance analysis: After the simulation is finished and data is available as a time-stamped event

trace. This data can then be statistically analyzed with statistical tools (e.g. R, Matlab, python libs,
etc.) to draw conclusions.

6. Graphical Visualization: Raw or processed data collected in a simulation can be graphed using tools
like Gnuplot, matplotlib or XGRAPH.

Figure 7: NS-3 Basic Simulation Model

In NS-3 the basic computing device abstraction is called, Node. Node representing a class that provides
methods for managing the representations of computing devices in simulations, with added functionality.

Preliminary Version of CPSoS Simulation Tools and Training Data Generation

27

As shown, in Figure 7, each node contains one or more sub-modules, to represent different applications,
protocol stacks and communication technologies. Finally, in order to accomplish inter-node communication
inside the simulation environment, simulation designer must define Channels.

Following a bottom-up approach, at the bottom level of a NS-3 Node, the actual network interfaces are
setup (which can be more than one), namely NetDevice. NetDevices can be realized as the unix “eth0” for
example. Just as in a real computer, a Node may be connected to more than one Channel via multiple
NetDevices. In NS-3 the net device abstraction covers both the software driver and the simulated hardware.
A net device is “installed” in a Node in order to enable the Node to communicate with other Nodes in the
simulation via Channels. NetDevices allow simulation designed to setup models for simulating different
PHY-related models as well as MAC-related Models. Specialized versions of the NetDevice are
PointToPointNetDevice, WifiNetDevice.

The basic abstraction for the communication between nodes inside the simulation is the Channel. NS-3
provides multiple specialized versions of Channel, that is PointToPointChannel and WifiChannel. Channels
in NS-3 represents a basic communication interface, which provides methods for managing communication
subnetwork objects and connecting nodes each other. Channels allow simulation designers to setup models
for simulating different propagation models that affecting end-to-end delays and packet loss.

Finally, NS-3 provides helpers for simplify the process of the creation of a simulation using the Topology
Helpers. A simple process for setup, configure and run a simulation in NS-3, contain the following the
process:

1. Firstly, the nodes that will participate in the simulation must be created. For that purpose, the
NodeContainer helper is needed, used to install and configure simulation Nodes. The
NodeContainer topology helper provides a convenient way to create, manage and access any Node
objects that is created in order to run a simulation.

2. Then a channel is created that will be used for the communication between the simulation nodes.
A simple Helper that can be used is PointToPointHelper, which creates a point-to-point channel
between simulation nodes.

3. The next thing, that must be configured is the net devices that will be installed in the node of the
simulation. The NetDeviceContainer, with help from the PointToPointHelper will install the NIC on
the nodes and establish the connection between the nodes with a PointToPointChannel.

4. Finally, the internet stack is installed on the net devices of the nodes, using the InternetStackHelper,
using giving IP/TCP capabilities to the nodes.

On top of the simulation nodes that are created, it’s time to install the application that will generate the
traffic for the simulation.

Finally, in order to run the simulation, the start and the end of the simulation in seconds must be defined.

The NS-3 Benefits

One of the fundamental goals in the ns–3 design was to improve the realism of the models, i.e., to make
the models closer in implementation to the actual software implementations that they represent. Different
simulation tools have taken different approaches to modelling, including the use of modelling-specific
languages and code generation tools, and the use of component-based programming paradigms. While
high-level modelling languages and simulation-specific programming paradigms have certain advantages,

Preliminary Version of CPSoS Simulation Tools and Training Data Generation

28

modelling actual implementations is not typically one of their strengths. In the authors’ experience, the
higher level of abstraction can cause simulation results to diverge too much from experimental results, and
therefore an emphasis was placed on realism. The ns–3 Network Simulator programming language in part
because it better facilitated the inclusion of C-based implementation code. ns–3 also is architected similar
to Linux computers, with internal interfaces (network to device driver) and application interfaces (sockets)
that map well to how computers are built today. NS–3 also emphasizes emulation capabilities that allow
NS–3 to be used on testbeds and with real devices and applications, again with the goal of reducing the
possible discontinuities when moving from simulation to experiment.

Another benefit of realism is reuse. ns–3 is not purely a new simulator but a synthesis of several
predecessor tools, including ns–2 itself (random number generators, selected wireless and error models,
routing protocols), the Georgia Tech Network Simulator (GTNetS)[393], and the YANS simulator[271]. The
software that automates the construction of network routing tables for static topologies was ported from
the quagga routing suite. ns–3 also prioritizes the use of standard input and output file formats so that
external tools (such as packet trace analyzers) can be used. Users are also able to link external libraries such
as the GNU Scientific Library or IT++.

A third emphasis has been on ease of debugging and better alignment with current languages.
Architecturally, the chosen design was to emphasize purely C++-based models for performance and ease
of debugging, and to provide a Python-based scripting API that allows ns–3 to be integrated with other
Python-based environments or programming models. Users of ns–3 are free to write their simulations as
either C++ main() programs or Python programs. ns–3’s low-level API is oriented towards the power-user,
but more accessible “helper” APIs are overlaid on top of the low-level API.

THE NS-3 in CPSoSaware

In the context of the CPSoSaware, NS-3 will be adapted to run as a Software as a Service in order to facilitate
the integration with the CPSoSaware platform. External software interfaces will be responsible to feed NS-
3 with new configurations and trigger simulation experiments. Additionally, a mechanism for extracting and
processing the simulation traces will be also designed. This mechanism aims to support the post – analysis
of the simulation results and the decisions on whether the network configuration meets the application
functional and non – functional requirements. The internals of this design and implementation are not
subject of this deliverable and are described in more detail in D4.2. An overview of this architecture is
depicted on Figure 8.

Preliminary Version of CPSoS Simulation Tools and Training Data Generation

29

Figure 8: NS-3 in CPSoSaware

4.3.2 Inter – Communication Simulator

In order to simulate communication between the devices, it is necessary to simulate both the movement
of these vehicles in a scenario, and the radio propagation of the different messages sent by each one of the
devices. This propagation is affected both by distance and obstacles, which can attenuate and produce
signal reflections.

SUMO (https://networksimulationtools.com/sumo-simulator/) is a simulator extensively used which can
model traffic systems including road vehicles, from a microscopic level to a highly complex macroscopic, It
can manage a fleet of vehicles which follow traffic rules, including traffic lights, zebra crossings, intersection
precedence, etc. By itself, it is possible to extract from it relevant metrics related to traffic throughput in
different scenarios by adding new lanes or improving traffic light plans. Also, other indicators such as vehicle
emissions can be assessed from the simulations.

Figure 9 SUMO Highway Scenario

https://networksimulationtools.com/sumo-simulator/

Preliminary Version of CPSoS Simulation Tools and Training Data Generation

30

As commented, modelling vehicle movement is half of the for the simulation environment. A second layer
of modellization has been included by adding OMNET++ to simulate the V2X message radio propagation
for each vehicle. It is a simulation software which allows to visualize the signal propagation of the messages.

Figure 10: OMNET++ propagation example

OMNET++ can use various simulation protocols in the simulations. A package for V2X simulation has been
used, compliant with ETSI ITS-G5 protocol including GeoNetworking and BTP. The V2X Cooperative
Awareness Message (CAM) , broadcasted by each unit at 10 Hz is used as main message. It includes
information about the position, heading and speed of each V2X actor, among others.

The connectivity between booth tools is done with the TraCI protocol. Once started, SUMO accepts clients
connected using a TCP connection. Once this connection is established, the client, in our case OMNET++,
can trigger each simulation step. Radio propagation simulation for many vehicles takes a high amount of
time and cannot run in real time. Some effort in reducing the number of vehicles has been done, trying to
alleviate this situation and obtain better performance.

Initially the connection between both simulators was created directly. However, to gain more flexibility a
custom proxy has been developed in the middle, which is transparent in the communication between
SUMO and OMNET++, but can resend the information either to other tools, a log file, etc.

Figure 11: Tool interface

Preliminary Version of CPSoS Simulation Tools and Training Data Generation

31

In the context of the CPSoSaware, these tools model the movements and interaction of the vehicles and
other possible actors such as pedestrians. The latter are involved in the V2X ecosystem either by sending
VAM (Vulnerable User Awareness Messages, similar to CAM) from their mobile phones , or by proxy,
detected with a camera and them the VAM or CAM message generated from the network on their behalf.

4.4 CPSoS HW-SW Simulators

The OpenASIP-based soft core processors that are studied in the project for FPGA programming as well as
reliable co-processing can be simulated with a retargetable instruction-set simulator. The simulator is called
ttasim and it provides instruction cycle accurate results for the Transport-Triggered Architecture based co-
processors developed using the OpenASIP tools. The simulator is driven with an architecture description
format called Architecture Description File (ADF) which contains all the necessary information required for
cycle accurate modelling, but it does not provide dynamic latency information e.g. from unideal memory
hierarchies. For this level of accuracy, OpenASIP provides System C hooks that can be used to connect
ttasim co-processor models to larger system level simulations with desired accuracy, along with more
accurate memory models. The simulator can provide also utilization statistics for how many times
operations were executed and in which function unit, the bus utilization and so on. It provides also basic
software debugging features such as breakpoints and single stepping.

There is also a graphical user interface for the OpenASIP simulator engine called Proxim (from processor
simulator). This simulator also has visualizations for utilization, as exemplified in Figure 12.

Figure 12: Proxim's utilization visualization of a minimal co-processor architecture. The redness indicates the level of
utilization (so far) by the program.

Preliminary Version of CPSoS Simulation Tools and Training Data Generation

32

4.5 CPSoS Use-case dedicated simulators

4.5.1 Simulator for ADAS/AV systems research

4.5.1.1 CARLA simulator

CARLA is a tool for AV/ADAS systems research that is also an open-source simulator based on MIT license
allowing commercial and research use. CARLA assets are distributed using CC-BY License.
CARLA Simulator was developed in a flexible and modular way with dedicated API that allows easy
integrations with autonomous driving applications. These applications can include AV stack related to
perception and control algorithms including these based on deep learning and rule-based frameworks.
CARLA is based on following set of technologies:

• Core engine: Unreal Engine, popular engine with powerful 3D rendering capabilities allowing the
development of photorealistic simulations.

• Road network logic system: OpenDRIVE (as of February 2021 version 1.4 is used) which contains
information specific for simulation applications like road geometry, surface properties, signs, lane
types, directions and markings. Several road editors use OpenDRIVE standard for creating AV/ADAS
testing grounds (e.g. parts of specific cities) that can be later on imported to CARLA simulator.

• Basic architecture principle: scalable client-server architecture. Server manages the simulation
including physics computations, rendering of sensors, real world data updates (actors and other
relevant objects). Server can be run using GPU processing capabilities.

• Simulation control: API that works with both C++ and Python.

Figure 13: Basic structure of CARLA simulator for AV/ADAS research

CARLA simulator contains of following key modules:

• Sensors. Sensors acquire information from the surrounding world by being mounted on the vehicle.
CARLA supports multiple sensor types e.g.

o Camera – RGB camera.
o GNSS – geolocation of the vehicle and sensor.
o IMU – inertial measurement unit that contains gyroscope, compass and accelerometers.
o LIDAR – rotating LIDAR with 4D point cloud coordinates and intensity.
o Radar – 2D point map.
o Semantic LIDAR – rotating LIDAR with 3D point cloud including semantic segmentation.

• Traffic manager – vehicles/agents controller (non-ego vehicle controlled by user scripts).
• Data recorder – it is recording the whole scenario (step-by-step approach) allowing to replay every

time step of the recorded scenario.

Preliminary Version of CPSoS Simulation Tools and Training Data Generation

33

• ROS bridge – Robot Operating System integration – allowing two-way communication between
CARLA and ROS, however with performance limitations.

• Additional assets – multiple urban settings with basic weather conditions control.

4.5.1.2 Robotec.ai Real World Simulator

Robotec.ai has developed Real World Simulator which is a proprietary tool for developing, testing and
validating autonomous vehicles. Real World Simulator is currently used by OEMs and Tiers to develop
mainly commercial autonomous vehicles (e.g. cargo delivery ODD). Still simulator can be used in passenger
vehicle and public roads use case.

Simulator has been developed in modular way to allow engineers integrate multiple AV/ADAS stack
elements (e.g. perception stack or control system of the vehicle). Dedicated ros2cs module enables fast
integrations with software developed on top of ROS and ROS2 middleware
(https://design.ros2.org/articles/ros_middleware_interface.html).

Robotec.ai offers a modular, extendable, ROS(2)-based simulation platform to configure, develop and
integrate AV/ADAS components. Architecture of the simulation platform is shown in Figure 1 below.

Figure 14: High level architecture of Robotec.ai Real World Simulator.

This modular architecture allows customers to use custom environments developed with detailed real
world input data such us point clouds or geodata. It is also possible to use existing compatible outdoor or
indoor scenes and additional external models that can be positioned in the scene.

Robotec.ai simulation platform also allows to test and validate AV solutions through the system of advanced
solvers. Solvers are AV/ADAS algorithms such as localization, path planning or perception that the customer
would like to test. Existing customer solvers can be plugged into the simulation.

Robotec.ai Real World Simulator development is driven by the ROS2 middleware. We have developed
unique ROS2 module for Unity3D engine.

https://design.ros2.org/articles/ros_middleware_interface.html

Preliminary Version of CPSoS Simulation Tools and Training Data Generation

34

ROS and Unity3D don’t scale easily the programming languages, key concepts and coordinate frames are
all different. Robotec.ai has developed a high-performance communication module for Unity3D. This
unique module delivers following results: the performance of communication is increased by approximately
800 times comparing to third-party bridge solutions and it supports all standard as well as custom messages
with message generation.

Robotec.ai simulator contains following key modules:

• Real World Simulator architecture including handling of agents, support for multiple ego vehicles,
launch files configuration.

• Management system of states and logs from integrated autonomous driving software.
• Sensors simulation library:

o Sensor template interface supporting ROS2 messages.
o GPS (Global Positioning System) - sensor simulation providing location in global

coordinate system. Conversion point with rotation has to be defined in the simulation
scene to properly convert local coordinate system of simulation to global coordinate
system.

o IMU (Inertial measurement unit) – sensor simulation combined of accelerometers and
gyroscopes, providing measurements related to angular and linear movement
(translation, velocity, acceleration).

o LIDAR (LIght Detection and Ranging) – sensor simulation illuminating the target with laser
and creates 3D point cloud by measuring the Time of Flight of reflected rays to the
detector. Simulated LIDAR has multiple parameters enabling simulation of variety of
sensor models (2D and 3D).

o Camera – RGB camera simulation with management mechanism for handling multiple
field of views.

• Ros2cs module enabling high performance ROS2 communication for Unity3d.
• Vehicle physics adapted for vehicles.

o Engine, transmission and suspension simulation.
o Support for multiple controllers (including steering wheel controllers).

• Support tool for creating realistic simulation scenes based on real world data:
o 3D mesh models generation from real LIDAR measurements.

4.5.1.3 CARLA and Robotec Real World Simulator in CPSoSaware

One of the key aspects of the developed CPSoSaware components for the automotive AV/ADAS
use case are following:

• Deep multimodal scene understanding that provides multimodal sensor data (RGB/Lidar,
RGB/depth) to be analysed by Computer Vision/deep learning mechanisms and produce
high-level observations/detections.

• Multimodal localization - Requests the production of localization data from the
combination of measurements (e.g. GPS, LiDAR) for metrics like arrival/departure and
trajectories.

• Path-planning path generation between nodes.

Evaluated use cases in automotive pillar of CPSoSaware project will be following:
• Human in the loop control use case in single vehicle scenario

Preliminary Version of CPSoS Simulation Tools and Training Data Generation

35

• Cybersecurity issues in connected cars scenario
• Cooperative awareness scenario

Cybersecurity and cooperative awareness use cases needs to be validated in the environment with
multiple controlable ego-vehicles, what makes Robotec Real World Simulator the best fit for those
scenarios.

For the efficient implementation (development, testing and validation) of the listed modules
following key assets are required from the simulation:

• Realistic representation of the environment. Achievable in both simulation environments
(CARLA and Robotec Real World Simulator).

• Available sensors (LIDAR, GNSS, IMU, RADAR, Camera, vehicle data). All sensors are
available in both simulation environments (CARLA and Robotec Real World Simulator).
However, Carla provides more photorealistic environment for simulations focused on
camera applications.

• Machine learning support. Support provided in both simulation environments (CARLA and
Robotec Real World Simulator).

• Communication interfaces (ROS with preference for new version ROS2). Communication
provided in both simulation environments (CARLA and Robotec Real World Simulator).

• Possible simulation of multiple agents. Achievable in both simulation environments (CARLA
and Robotec Real World Simulator).

• Possible extension with additional modules: driver behavior, V2X communication,
cooperative collision warning system. Achievable in both simulation environments (CARLA
and Robotec Real World Simulator). However, none of both simulation environments
provides V2X communication for now (this is also planned as one of the CPSoSaware
components).

Below Figures show all relevant AV/ADAS sensors attributes for CPSoSaware use cases:

Figure 15: GNSS attributes in CARLA simulator as specified in the GNSS sensor documentation.

Preliminary Version of CPSoS Simulation Tools and Training Data Generation

36

Figure 16: LIDAR attributes in CARLA simulator as specified in the LIDAR sensor documentation.

Figure 17: Camera attributes in CARLA simulator as specified in the camera sensor documentation. Please note that
camera has also camera lens distortions options as separate attributes group.

Preliminary Version of CPSoS Simulation Tools and Training Data Generation

37

Figure 18: Inertial Measurement Unit (IMU) attributes in CARLA simulator as specified in the IMU sensor
documentation.

4.5.1.4 Robotec V2X Simulator

Robotec.ai is developing V2X Simulator as ROS2 module, that can be integrated with any AV simulator
having support for ROS communication. The simulator works as external module with replicated both
static environment (scene) and all dynamic objects.

Preliminary Version of CPSoS Simulation Tools and Training Data Generation

38

Figure 19: V2X simulator

Integration with AV simulator consists of 3 types of interfaces:

• Static environment communication – ROS message containing information about the scene.
Environment is created in V2X simulation only once, on initialization of simulated use case.

• Dynamic objects state – ROS message send periodically from each traffic agent. This message is
responsible for sharing locations of agents and all the data transmitted in V2X message from AV
simulator to V2X Simulator.

• Received V2X messages – ROS message sending all received V2X messages back to AV Simulator

V2X communication is performed in V2X simulator, based on locations of agents, environment and
Propagation Model. Currently only Free Space Path Loss model is implemented, in future more advanced
models will be developed.

Preliminary Version of CPSoS Simulation Tools and Training Data Generation

39

5 Simulation and Training Block Interfaces

In this section we present several APIs used for communication within the SAT. Good practice demands
that publicly accessible APIs be protected against unauthorized access. The requirements for
authentication and authorization will be addressed in the next deliverable.

5.1 Orchestrator interfaces

The orchestration tool described in Section 4.1 is responsible for triggering, handling and monitoring all the
intermediate steps of the simulation workflow. The execution of a workflow is handled through a REST API
and can be triggered either on demand or event – driven. This API is exposed via a REST API Gateway that
publishes the two aforementioned approaches via the services presented on Figure 20.

Figure 20: CI/CD Orchestrator Control API

The pipeline in the context of the CPSoSAware consists of one or more steps that each reflect on specific
simulation execution. These workflows are registered in independent isolated branches along with their
configurations. Every new commit on each of the branches will trigger the execution of the workflow by
the orchestrator. This is performed by a software agent that monitors the git repository of CPSoSAware.

On the other hand, the “OnDemandHook” gives control to the user to trigger a workflow with specific
configuration. This configuration defines the steps that compose the user defined workflow and the
application requirements (use case dependent). This is performed through a POST HTTP call with payload
the yaml file presented in Table 2. This file describes an array of steps to be executed sequentially. Each
step is defined by the following properties:

• Unique identifier (id),
• A trigger_uri that actually caries the http call that will be used by the orchestrator to trigger the

particular simulation. This trigger_uri is simulator specific and the respective http services (where
applicable) will be implemented in the context of the CPSoSAware,

• The file path of the configuration file for the particular simulation step. This configuration file is
simulator specific as well and must be accessible by the simulation environment that will consume
it.

Table 2 OnDemandHook service payload

workflow:
 - id: "step1"
 trigger_uri: "http://esdalab.ece.uop.gr /ns3/step/run1"

Preliminary Version of CPSoS Simulation Tools and Training Data Generation

40

 input: "http:// esdalab.ece.uop.gr /ns3/step/input.json" #
Optional
 - id: "step2"
 trigger_uri: "http:// esdalab.ece.uop.gr /ns3/step/run2"
 input: "http://esdalab.ece.uop.gr /ns3/input.json" #
Optional
 - id: "step3"
 trigger_uri: "http:// esdalab.ece.uop.gr /ns3/step/run3"
 input: "http:// esdalab.ece.uop.gr /ns3/step/input.json" #
Optional

Apart from the interfaces defined under the scope of the orchestration tool, additional interfaces are to be
defined and implemented for the control of the simulators by the orchestrator. The first simulator to be
integrated with the orchestrator is the Network Simulator 3 (NS3) used in the intra – communication layer.
This simulator is a command line executable written in C++ and python. In the context of CPSOSoSAware,
a wrapper is implemented that delegates the execution of a simulation to a REST API. This API exposes a
POST http call as presented in Figure 21. The payload of this request is a json file with two main fields:

• Callback: The callback property supports the execution of actions after the completion of a
simulation step

• Filename: The filename of the configuration that the simulator must execute. In the NS3 case, this
file is a .cpp file that describes the simulation in terms of network topology, device attributes,
channel attributes, Error Rate Models, Channel models, etc.

Figure 21 NS3 Simulation Interface

Further API interfaces are to be designed and developed while the simulators used in the CPSoSAware
project are integrating to the CI/CD workflow and the orchestrator. The enhanced version of API will be
further presented in the next version of this deliverable.

Preliminary Version of CPSoS Simulation Tools and Training Data Generation

41

5.2 Data storage and transformation services interfaces

5.2.1 Low-Level Instance Base Interface

As mentioned in section 4.2, we describe the low-level interface intended for direct manipulation with basic
structures that includes instances, properties and aggregations.

Instance – represents a simple object that has unique identifier (UID) that allow to distinguish one instance
from another. Instances can possess properties.

Property - represents a relation between instance (property owner) and property value, that can be either
simple value, another instance or aggregation. Each property has name and namespace. Any instance can
possess (be owner of) only one property with specific name within specific namespace.

Aggregation – generalization of the instance that served to represent one-to-many relations. May contain
any number of members that can be either instances or simple values. In the current implementation
cannot possess properties. The question on whether aggregation can or cannot possess properties is under
investigation.

The low-level interface includes methods to get/create/delete instances, properties, aggregations and
namespaces. It also includes additional methods that are created to fulfill functionality required by high-
level APIs such as class base or equivalence rules. This interface in general is not supposed to be used by
connected simulators or other tools, unless connected tool do not introduce extension to data storage and
transformation itself.

5.2.2 Class definition interface

Class definition interface introduces two APIs. The first API is developed to manage namespaces, where
namespace is an object that includes two fields: name and version. Once namespaces are created, the
interface receives unique id and further operations which are performed using this id. The API to manage
namespaces shown on Figure 22

Figure 22: API for namespace management

Preliminary Version of CPSoS Simulation Tools and Training Data Generation

42

The API includes methods to get a list of all registered namespaces, add new namespace, delete namespace
by id, and get the namespace id by name and version if namespace is already registered. When new
simulation component connects to the data storage and integration service, its integration object checks if
the corresponding namespace is already registered by sending a GET namespace/search request. If the
namespace is not registered, then the integration agent registers the namespace by sending a POST
/namespaces request, and then registers the corresponding classes and data schemas.

The second API is developed to manage classes. The CPSoSaware simplified ontology introduces a class
definition object that includes the following fields:

• "namespace" – namespace object for which belongs class definition.
• "class" – name of the class.
• "schema" – schema of the class.

Schema consists of properties definitions enlisted under “properties” key, where each property includes
The following fields:

• "name" - name of the property.
• "namespace" – optional. Should be provided if property has different namespace (not same as

defined in the schema namespace).
• "optional" – true/false indicates if property is optional or not. Instance of respective class may not

possess optional properties.
• "value" – describes value of the instance.

Value field includes following properties:
• "type" – describes type of property value may be either “str”, “int”, “float” or “object”, indicating

that related property should have value of corresponding type.
• "optional"– true/false indicates that value is optional (i.e. can have “null”) value or not.
• "collection" – can be “set”, “list” or null; indicates that the property points to collection of objects

of the corresponding type. Null value in this field indicates that property possesses a single value.
Properties possessing collection values (having collection “set” or “list”) will contain an aggregation
value in the instance.

• "constrains" – set of constraints on property value (functionality of this field does not implement
yet).

• "default" – default value of the property. Optional. If default is provided and the property’s value
is null, then this default is used.

• "object" – either null (for simple types) or object specification (for object type).
Object specification consist of two fields:

• "namespace" – namespace to which the object value belongs.
• "class" – name of the class to which the object value belongs.

API to manage classes is shown in Figure 23.

Preliminary Version of CPSoS Simulation Tools and Training Data Generation

43

Figure 23: API for class definitions management

The API includes methods to add/update/delete class definition, to get class definition by namespace id
and class name and to get list of all registered classes for specific namespace. After registering new
namespace, the integration agent registers all classes sending POST /namespaces/{namespaceId}/classes
request.

5.2.3 Data definition interface

Successful tool integration necessitates that system model data to be serialized or rendered into a
preferably standard, format or syntax that can be parsed later and transformed into another format as per
need of subsequent layers.
JSON representation of a set of RDF triples as a series of nested data structures has become increasingly
popular as a data serialization format thanks to its more lightweight structure compared to XML, making it
a useful format for data exchange in a way that requires less bandwidth than a bulky XML document. Thus,
CPSoSaware choose JSON format as a primary format for data serialization. To enlarge compatibility with
simulators that using XML as primary serialization format automatic XML-to-JSON and JSON-to-XML
translators are provided.
However, JSON data format (especially after XML-to-JSON translation) are lacking several important
features that are natural parts of underlining object models. For example, JSON format lacking possibility
of referencing object that are defined in other parts of JSON document. To overcome difficulties introduced
by the missing features we provide class definition extension for data. This extension provides following
properties:
On the schema level:

• "name" - name of the schema. Since objects of the same class can be serialized with different data
formats several different schemas can be provided to deserialize these objects. These schemas are
distinguished by their names.

• "representation" – defines properties representation into JSON serialized object. Includes the
following sub-properties:

Preliminary Version of CPSoS Simulation Tools and Training Data Generation

44

o “type” – can be one of “key_value_base” / “property_base” / “mixed”. Describing data
representation type: “key_value_base” is a native JSON representation, where JSON key
describes property name and JSON value describes property value; “property_base” is a
special representation often produced by XML-to-JSON converters, where each property
defined by two JSON key-value pairs one having property name as its value and another
having property value as its value; “mixed” is a representation where both types of
representation are used.

o “base_key” – parameter that defines JSON key which value defines the class of JSON
serialized objects. This value will be parsed according to corresponding schema. All other
JSON key-value pairs will be ignored.

o “key_prefix” – parameter that defines prefix that should be stripped from JSON key on
JSON-to-CIF conversion or added to JSON key on CIF-to-JSON conversion.

o “key_value_base” – describes parameters specific for “key_value_base” representation of
properties. Includes “base_key” and “key_prefix”.

o “property_base” – describes parameters specific for “property_base” representation of
properties. Includes “base_key”, “key_prefix” and two additional parameters:
 “property_name_key” – describes which JSON key is used by parser to identify

key-value pair that defines property name as its value.
 “property_value_key” – describes which JSON key is used by parser to identify key-

value pair that defines property value as its value.
• “keys” – define list of unique keys that allow to distinguish one object of corresponding class from

another. Includes the following sub-properties:
o “name” – name of the key.
o “properties” – defines list of properties which form unique identifier of the object of

corresponding class.
On the property level:

• "representation" – defines representation of the specific property if schema has “mixed” type of
representation.

• “base_key” – same meaning as “base_key” in representation description but applied only to a
specific property.

• “key_prefix” – same meaning as “key_prefix” in representation description but applied only to a
specific property.

On the object level:
• "schema" – defines name of the schema of the nested JSON object. Object will be parsed according

to corresponding schema.
• "extensible" – true/false. Defines if nested object can represent a new object of corresponding

class (true), or only reference to existing object of corresponding class (false).
• "id_type" – defines how nested object are identified and can be either:

o “object” – nested object itself provided according to corresponding schema,
o “uid” – reference to the existing instance in the CIF database provided as UID of the CIF

instance,
o “key”–indicates that only several properties are provided and set of provided properties.

It includes at least properties enlisted in the unique key provided in the “id_key” property
value,

o "key_property" – indicates that provided value of a property that uniquely identify the
object. In this case “id_key” property refers to key that based on one property only.

Preliminary Version of CPSoS Simulation Tools and Training Data Generation

45

• "id_key" – required if “id_type” property has value “key” or “key_property” defines a name of the
unique key in the corresponding schema.

Schema management API shown on Figure 24

Figure 24: Schema management API

Schema management API introduces methods that are similar to the class management API methods. After
class registration the integration agent should register data schemas for this class.

5.2.4 Data management interface

Data management API is shown in Figure 25.

Preliminary Version of CPSoS Simulation Tools and Training Data Generation

46

Figure 25: Data management API

The data management API provides several groups of methods to manage the data:

• Global methods allow to add/delete/update or get all data according to the specific namespace,
class, and schema. These methods are applied by sending corresponding request to
/namespaces/{namespaceId}/classes/{className}/schemas/{schemaName}/data/all URL.

• Integration agents use another group of methods that allows to add/delete/update or get all data
according to the specific namespace, class, schema, and simulation id. These methods are applied
by sending corresponding request to /namespaces/{namespaceId}/classes/{className}/schemas
/{schemaName}/data/simulation/{simulationId} URL.

• Another two methods allow to get or delete all data according to the specific namespace, class,
and schema that satisfy search criteria. These methods are applied by sending corresponding
request to /namespaces/{namespaceId}/classes/{className}/schemas/{schemaName}/data/
search URL.

• Finally, there are methods that allows get, update or delete the data entry according to the specific
namespace, class, and schema and having specific id.

5.2.5 Ontology Alignment and Equivalence Rules

Ontology alignment, or ontology matching, is the process of determining correspondences between
concepts in ontologies. In the tool-integration context involving many tools providing their own ontologies,
ontology matching has taken a critical place for helping heterogeneous tools to interoperate. Ontology
alignment is provided by the data transformation service as set of the equivalence rules between objects
of two or more classes. Equivalence rules allow automatic transformation of objects between different
simulators working on different levels of abstraction. The set of the rules describing all equivalence
relations between objects of all classes of two different namespaces represents a mapping between

Preliminary Version of CPSoS Simulation Tools and Training Data Generation

47

corresponding ontologies. Notwithstanding the different existing tools and languages for ontology
alignment, CPSoSaware found that most of these tools and languages are not suitable for simplified
ontologies for various semantic and syntactic reasons. The most promising language for the alignment of
simplified ontologies was proposed in the CERBERO project, and CPSoSaware will continue develop and
utilize this language. This choice supported by common principles that lies under CIF developed by
CERBERO data storage and transformation services developing by CPSoSaware.
Data transformation service provide following syntax of equivalence rules.

• Main rule syntax:
ns1:class1 operator ns2:class2 [*…] [ON …] [IMPLYING …];
ns1, ns2 - names of namespaces
class1, class2 - names of classes
operator - one of: ===, <==, ==>, <==>
[*…] - optional multiplication part
[ON …] - optional “on” part
[IMPLYING …] - optional “implying” part
; - termination symbol

• Optional multiplication part syntax:
* ns3:class3 | int_expression [*…]
ns3 - name of namespace
class3 - name of class
|int_expression – any integer expression that can be provided instead of ns3:class3
[*…] - optional multiplication part

• Optional on part syntax:
ON (bool_expression [, bool_expression])
bool_expression – any bool expression
[, bool_expression] – optional additional comma-separated bool expressions

• Optional implication part syntax:
IMPLYING (implication [, implication])

• Implication syntax 1:
ns1:class1.property_expr1 operator ns2:class2.property_expr2 [*…] [ON …] [IMPLYING …]
ns1, ns2 - names of namespaces
class1, class2 - names of classes
operator - one of: ===, <==, ==>, <==>
property_expr1, property_expr2 - expressions defining (sub)properties names
[*…] - optional multiplication part
[ON …] - optional “on” part
[IMPLYING …] - optional “implying” part

• Implication syntax 2:
ns1:class1.property_expr1 = gen_expression
ns1 - name of the namespace
class1 - name of the class
property_expr1 - expression defining (sub)property name
gen_expression - general mathematical expression

Equivalence rule semantics.
Semantics of main rule operators (void multiplication part).

Preliminary Version of CPSoS Simulation Tools and Training Data Generation

48

=== - means that corresponding classes are equivalent, i.e. each instance of class 1 is also instance of
class 2 and vice versa.
==> - means that class 2 equivalent to class 1, i.e. each instance of class 2 is also instance of class 1, but
instance of class 1 is equivalent to instance of class 2 only if both met matching criteria provided in “on”
part.
<== - means that class 1 equivalent to class 2, i.e. each instance of class 1 is also instance of class 2, but
instance of class 2 is equivalent to instance of class 1 only if both met matching criteria provided in “on”
part.
<==> - means that instance of class 1 is equivalent to instance of class 2 only if both met matching criteria
provided in “on” part.
Semantics of multiplication part.
Multiplication part change equivalence rules operator semantics in the following sense:

• when multiplication part contains class reference this means that class 1 equivalent to cartesian
product of instances of class 2 and class 3, each instance of class 1 has two different instances (one
of class 2 and one of class 3) as his counterpart with respect to corresponding relation operator.

• when multiplication part contains integer expression this means that each instance of class 1
corresponds to number of instances of class 2, and this number defined by integer expression that
may depend on properties of corresponding instances.

Semantics of “On” part.
“On” part can include several logical expressions that treated as matching criteria between instances that
are equivalent according to corresponding rule. These expressions can be treated as one single expression
with “and” operator between corresponding parts.
Semantics of implications.
Implication of kind 1 (syntax 1) can be treated as nested equivalence rule and define equivalence relations
between property values of instances of corresponding classes. Implication of kind 2 (syntax 2) define
property value that should be assigned during rule execution process. This value is a result of calculation of
general mathematical expression.

Data transformation service provides rule management API that allows add, delete, or get equivalence rules.
API description represented on Figure 26

Figure 26: Rules management API

Preliminary Version of CPSoS Simulation Tools and Training Data Generation

49

6 Conclusion

This document is the first version of the architecture for simulation and training (SAT) block. We have
identified two key functions that should be performed by the SAT block: SAT block should be capable of: i)
performing joint simulations across different and diverse simulators and ii) storing simulation data in a way
that will allow queries to obtain consistent datasets that are further to be used to train ML algorithms.

The design of SAT block architecture starts with a review of the SAT block functionality and state-of-the-art
approaches used to perform joint simulation, and storage DB types that can be utilized to store simulation
data. We review co-simulation as a method for performing joint simulation based on the Functional Mock-
up Interface (FMI), and several prominent tools that support it. However, we come to the conclusion that
this methodology is too complex for our needs and propose to use data transformation to the CERBERO
Interoperability Framework format (CIF) instead. Our comparison of persistent storage DB types suggests
that a relational database would be the best choice for the simulation data. The design of the architecture
of the simulation and training (SAT) block is driven by requirements to its functionality. We describe this
architecture and how it relates to an Integration and Storage approach for integrating different and diverse
simulators that use different modelling paradigms and languages, and how it supports the Simulation
Workflow. We then lay out the SAT components, including how it will be implemented in Jenkins, the
Orchestration tool; how the data will be stored, and how inter and intra-communication will be
implemented. We also discuss the HW-SW simulators based on the OpenASIP simulator engine Proxim, and
the use-case dedicated simulators based on CARLA and Robotec. We then describe the SAT interfaces
including the orchestrator and data storage interfaces.

In summary, the proposed architecture allows the project to achieve objective Ο4.2 “Implement
CPSoSaware Simulation and Training block that constitutes the basic testing and training data extraction
environment for the design and redesign procedures performed in the MRE System Layer component.”
The next version of the deliverable will be focused on the implementation and evaluation of the proposed
architecture.

	1. Executive Summary
	1.1 Structure of Document
	1.2 Related Documents and Tasks
	1.3 Definitions and Acronyms

	2 Introduction and state of the art (IBM)
	2.1 Co-simulation methods and tools
	2.1.1 Methods
	2.1.2 Functional Mock-up Interface (FMI)
	2.1.3 Tools
	2.1.3.1 IBM Engineering Systems Design Rational Rhapsody
	2.1.3.2 INTO-CPS

	2.1.4 Summary

	2.2 Storage DB types
	2.2.1 Relational databases
	2.2.2 Key-value stores
	2.2.3 Document databases
	2.2.4 Graph databases
	2.2.5 Object databases
	2.2.6 Summary of Storage DB types

	3 Simulation and Training Block Architecture
	3.1 Architecture overview
	3.2 Integration and Storage approach
	3.3 Simulation workflow

	4 Simulation and Training Block Components
	4.1 Orchestration tool
	4.2 Data storage and transformation services
	4.3 Inter and Intra Communication Simulators
	4.3.1 Intra – Communication Simulator
	4.3.2 Inter – Communication Simulator

	4.4 CPSoS HW-SW Simulators
	4.5 CPSoS Use-case dedicated simulators
	4.5.1 Simulator for ADAS/AV systems research
	4.5.1.1 CARLA simulator
	4.5.1.2 Robotec.ai Real World Simulator
	4.5.1.3 CARLA and Robotec Real World Simulator in CPSoSaware
	4.5.1.4 Robotec V2X Simulator

	5 Simulation and Training Block Interfaces
	5.1 Orchestrator interfaces
	5.2 Data storage and transformation services interfaces
	5.2.1 Low-Level Instance Base Interface
	5.2.2 Class definition interface
	5.2.3 Data definition interface
	5.2.4 Data management interface
	5.2.5 Ontology Alignment and Equivalence Rules

	6 Conclusion

