

D1.4 – SECOND VERSION OF CPSOSAWARE SYSTEM ARCHITECTURE

Authors
Pavlos Kosmides (CTL), Panagiotis Mitzias (CTL), Efstratios Kontopoulos (CTL), Eleni
Adamopoulou (CTL)

Work Package WP1 – Requirements, Use Cases, Specifications and Architecture

 Abstract

This document presents an updated report on technical specifications,

system requirements and architecture of the CPSoSaware system. It

introduces the applied platform specification methodology, which defines

a set of distinct viewpoints for the system design: context, components,

requirements, distribution, and realization views. Subsequently, the

document presents the latest status of three of these views that are

considered pertinent to this version of the architecture definition. Firstly, it

reports the updated system decomposition to technical components with a

focus on dependencies and interfaces among the latter. Secondly, the

document lists the system requirements, serving as reference for their

fulfilment status, priority, and monitoring. Lastly, the distribution of

technical components to CPSoSaware use cases and architectural blocks is

demonstrated.

Funded by the Horizon 2020 Framework Programme
of the European Union

Ref. Ares(2022)720044 - 31/01/2022

2

Deliverable Information

Work Package WP1 – Requirements, Use Cases, Specifications and Architecture

Task T1.3 – CPSoSaware System Specifications and Architecture

Deliverable title Second Version of CPSoSaware System Architecture

Dissemination Level Public

Status F

Version Number 1.0

Due date 31/12/2021

Project Information

Project start and
duration

01/01/2020 – 31/12/2022, 36 months

Project Coordinator Industrial Systems Institute, ATHENA Research and Innovation Center

26504, Rio-Patras, Greece

Partners 1. ATHINA-EREVNITIKO KENTRO KAINOTOMIAS STIS TECHNOLOGIES TIS
PLIROFORIAS, TON EPIKOINONION KAI TIS GNOSIS (ISI)
* Coordinator

2. FUNDACIO PRIVADA I2CAT, INTERNET I INNOVACIO DIGITAL A CATALUNYA
(I2CAT),

3. IBM ISRAEL - SCIENCE AND TECHNOLOGY LTD (IBM ISRAEL

4. ATOS SPAIN SA (ATOS),

5. PANASONIC AUTOMOTIVE SYSTEMS EUROPE GMBH (PASEU)

6. EIGHT BELLS LTD (8BELLS)

7. UNIVERSITA DELLA SVIZZERA ITALIANA (USI),

8. TAMPEREEN KORKEAKOULUSAATIO SR (TAU)

9. UNIVERSITY OF PELOPONNESE (UoP)

10. CATALINK LIMITED (CATALINK)

11. ROBOTEC.AI SPOLKA Z OGRANICZONA ODPOWIEDZIALNOSCIA (RTC)

12. CENTRO RICERCHE FIAT SCPA (CRF)

13. PANEPISTIMIO PATRON (UPAT)

Website www.cpsosaware.eu

http://www.cpsosaware.eu/

3

Control Sheet

VERSION DATE SUMMARY OF CHANGES AUTHOR

0.1 13/12/2021 Document outline created CTL

0.2 17/12/2021 v1 of Chapters 3, 4 and 5 CTL

0.3 04/01/2022 v2 of Chapters 3, 4 and 5 CTL

0.4 05/01/2022 Authored Chapter 2 CTL

0.5 06/01/2022 Added executive summary & introduction CTL

0.6 07/01/2022 v2 of Chapter 2 CTL

0.7 11/01/2022 Integrated partner contributions CTL

0.8 13/01/2022 Authored Abstract and Chapter 6 CTL

0.9 17/01/2022 Submitted for internal review CTL

1.0 31/01/2022 Final version submitted to EC CTL

 NAME

Prepared by CTL

Reviewed by Aris Lalos (ISI), Antonio Álvarez Romero (ATOS)

Authorised by CTL

DATE RECIPIENT

17/01/2022 Project Consortium

31/01/2022 European Commission

4

Table of Contents

Executive Summary ... 8

1 Introduction ... 9

1.1 Document Structure ... 9

1.2 Definitions and Acronyms .. 9

2 CPSoSaware Platform Specification Methodology .. 11

2.1 Viewpoints and Views .. 11

2.2 Process Model .. 11

3 Component View .. 13

3.1 System Decomposition ... 13

3.1.1 TC2.2.1 Intra-Communication Sim Tool ... 20

3.1.2 TC2.2.2 PoCL-Remote ... 20

3.1.3 TC2.3.1 HW Accelerator IP Cores ... 21

3.1.4 TC2.3.2 Security Accelerators for CPS security agents/sensors 21

3.1.5 TC2.3.3 Model transformation to OpenCL ... 22

3.1.6 TC2.4.1 Xilinx XRT KPI monitoring .. 22

3.1.7 TC2.5.1 Modelling Orchestration Tool ... 23

3.1.8 TC3.1.1 Visual Localization ... 23

3.1.9 TC3.1.2 Deep Multimodal Scene Understanding ... 23

3.1.10 TC3.1.3 User Behaviour Monitoring ... 24

3.1.11 TC3.1.4 AI Acceleration .. 24

3.1.12 TC3.2.1 PoCL-Accel ... 25

3.1.13 TC3.3.1 Multimodal Localization API .. 25

3.1.14 TC3.3.2 PathPlanning API ... 26

3.1.15 TC3.4.1 XR tools for increasing situational awareness 27

3.1.16 TC3.5.1 CPS layer Security sensors/agents ... 27

3.1.17 TC3.6.1 TCE (openasip.org) soft cores .. 28

3.1.18 TC4.1.1 OpenCL Wrapper for Hardware IP Cores .. 28

3.1.19 TC4.1.2 HW/SW profiling and analysis based on Vitis Tools 29

3.1.20 TC4.1.3 Architecture Optimization ... 29

3.1.21 TC4.2.1 Intra-Communication Manager ... 30

3.1.22 TC4.3.1 Security Runtime Monitoring .. 30

3.1.23 TC4.4.1 V2X simulator .. 31

3.1.24 TC4.4.3 AV Simulation .. 32

3.1.25 TC4.5.1 Semantic Knowledge Graph .. 33

3.1.26 TC4.5.2 Semantic Knowledge Graph Service .. 33

3.1.27 TC5.1.1 HLS based SW to HW Transformation ... 34

3.1.28 TC5.3.1 Extended Reality lifelong learning tools/Interfaces for integrated CPSoS
 34

3.1.29 TC5.3.2 Manufacturing Environment Simulation ... 35

3.2 Dependencies and Interfaces Between System Components 35

4 Requirement View .. 43

4.1 System Requirement Monitoring Methodologies ... 43

5

4.2 Current Status of System Requirements .. 45

5 Distribution View .. 91

5.1 System components per Use Case ... 91

5.2 Architectural layers .. 92

6 Conclusions and Next Steps ... 96

References .. 97

Annex A: CPSoSaware Architecture as PlantUML code .. 98

6

List of Figures

Figure 1 - Process for documenting the different views in ARCADE. 12

Figure 2 - Interfaces of components related to OpenCL 39

Figure 3 - Interfaces of CARLA-integrated components 40

Figure 4 - Interfaces of Security Runtime Monitoring 40

Figure 5 - Interfaces of Semantic components 41

Figure 6 - Interfaces of simulators 41

Figure 7 - Overview of system interfaces (link for larger image) 42

Figure 8 - Functional and non-functional requirement distribution 88

Figure 9 - Fulfilment status of requirements 89

Figure 10 - Requirement priority distribution 90

Figure 11 - Main architectural blocks 92

Figure 12 - CPSoS layer and sub-blocks 93

Figure 13 - CPS/CPHS layer and sub-blocks 94

Figure 14 - Simulation and Training layer and sub-blocks 95

List of Tables

Table 1 - System decomposition to Technical Components 13
Table 2 - Dependencies between Technical Components 36
Table 3 - Explanation of fields in the requirement specification template 43
Table 4 - Status of system requirements 45

7

8

Executive Summary

This document constitutes D1.4 “Second Version of CPSoSaware System Architecture” and reports on the
outcomes of the second phase of Task 1.3 during the second year of the project. To this end, D1.4 builds
upon the information reported in the preceding D1.3 “Preliminary Version of CPSoSaware System
Architecture” to describe the progress in architecture definition using an agile system specification
methodology. According to the latter, a series of distinct viewpoints has been defined for the
decomposition of the system to technical components, the documentation of dependencies and
interfaces, the recording and monitoring of system requirements, and the distribution of modules within
the system. The generated views, that are presented in this document and constitute the main outputs of
this deliverable, are meant to facilitate the system interpretation, implementation, extensibility, and
maintainability.

9

1 Introduction

In the context of system design, architecture is defined as the fundamental organization of a system
embodied in its components, their relationships to each other, and to the environment, and the principles
guiding its design and evolution [1].

This technical report builds upon the documentation presented in D1.3 “Preliminary Version of
CPSoSaware System Architecture” to elaborate on the headway of the architecture definition within the
CPSoSaware project. A novel system specification methodology has been applied, that defines a set of
views and prescribes how to use these in the architectural description to facilitate the system
interpretation, implementation, extensibility, and maintainability.

1.1 Document Structure

The rest of the document is structured as follows:

• Chapter 2 is an introduction to the platform specification methodology that has been adopted for
the definition of architectural views;

• Chapter 3 describes the component view, containing the system decomposition to technical
components and dependencies/interfaces between them;

• Chapter 4 presents the updated requirement view, including monitoring methodology and a
report on the status of all system requirements;

• Chapter 5 presents the distribution view of technical components to CPSoSaware use cases and
architectural layers;

• Chapter 6 concludes the document with some final remarks and directions for the next steps.

1.2 Definitions and Acronyms

Below is a list of the most relevant acronyms used in the document together with their recurring
definitions:

Acronym / Term Definition

AR Augmented Reality

ASIP Application-specific Instruction-set Processor

CL Cooperative Localization

CNN Convolutional Neural Network

CPS Cyber-Physical System

CPSoS Cyber-Physical System of Systems

CSV Comma-separated Values

10

DCNN Deep Convolutional Neural Network

DMS Driver Monitoring System

DoF Depth of Field

FPGA Field-Programmable Gate Array

HLS High-Level Synthesis

HW Hardware

LiDAR Light Detection And Ranging

MQTT Message Queuing Telemetry Transport

OWL Web Ontology Language

PoCL Portable Computing Language

RDF Resource Description Framework

RTL Register Transfer Level

SHACL Shapes Constraint Language

SRMM Security Runtime Monitoring and Management

SW Software

TCE TTA-Based Co-design Environment

UML Unified Modeling Language

XR Extended Reality

XRT Xilinx Run-time

11

2 CPSoSaware Platform Specification Methodology

For specifying v2 of the CPSoSaware platform architecture, we relied on the well-known ARCADE
framework1, a domain and technology-independent architectural description framework for software
intensive systems. This chapter briefly presents the principles underlying ARCADE, focusing on the distinct
viewpoints it defines for describing software system architectures.

2.1 Viewpoints and Views

The core of the ARCADE framework is the specification of a set of viewpoints for describing the software
system architecture. Each viewpoint defines how a specific view of the target system shall be described,
while accompanying diagrams (typically in UML) better illustrate the respective operations and
interactions. In a nutshell, viewpoints are used to create a view, and each view consists of one or more
models that specify different aspects related to the structure and behaviour of a target system.

ARCADE defines the following five viewpoints:

• Context Viewpoint: The context viewpoint defines the environment of the system, documenting
what the target system is intended to do in its environment and containing the specification of
use case scenarios and elicited requirements. The CPSoSaware context viewpoint has already
been described in D1.2 “Requirements and Use Cases” (delivered in M15) and will not be further
elaborated in this document.

• Component Viewpoint: The component viewpoint specifies the decomposition of the system into
components (i.e., subsystems and information objects) and describes their interactions and
interfaces. The CPSoSaware component viewpoint is presented in the next chapter.

• Requirement Viewpoint: The requirements viewpoint documents all requirements related to the
target system, with the aim to verify that the latter is indeed capable to perform its initially
intended tasks. Functional requirements for CPSoSaware were documented in D1.2, while
technical requirements are presented in Chapter 4.

• Distribution Viewpoint: The logical distribution of components within the system architecture is
the topic of the distribution viewpoint. The CPSoSaware distribution viewpoint is presented in
Chapter 5.

• Realisation Viewpoint: The realisation viewpoint is aimed at describing the implementation of
the subsystems, along with their deployment. Potential constraints regarding the implementation
and/or deployment of the target system’s components should also be documented. This
viewpoint is omitted from this deliverable and will be presented in the final iteration of the
CPSoSaware architecture, D1.5, which is due M36.

2.2 Process Model

Figure 1 displays the high-level process model for developing the different views in the ARCADE
framework. The context view is the more “high-level” one and should be documented first, followed by
the “mid-level” views of requirements, component, and distribution. Finally, the “lowest-level” realization
view should be documented.

1 http://arcade-framework.org/

http://arcade-framework.org/

12

Figure 1 - Process for documenting the different views in ARCADE.

This is not a strictly sequential process in the sense that a view does not need to be finished before the
next view can be documented. Higher views can also be partially finished in the first iteration, before a
lower-level view can be initiated; upper views can then be revisited and refined. However, a hard
constraint is that a lower-level view should not document elements that have not yet been included in
higher levels.

This approach is fully adopted within CPSoSaware as well, with three iterations of the system architecture
(v1, v2, final) being documented in three respective deliverables (D1.3, D1.4, D1.5), with each iteration
refining and extending the previous one.

13

3 Component View

In this section, the component view is reported, as described in subsection 2.1. The system decomposition
into technical components and the dependencies/interfaces between the latter are documented in the
following subsections.

3.1 System Decomposition

This subsection presents a thorough list of technical components that compose the CPSoSaware system,
along with short descriptions, related tasks, and partners in charge.

In comparison with D1.3, the technical components TC2.2.3 Slice Manager and TC2.2.4 LightEdge have
now been removed, due to changes in the scope of the demonstrator. Specifically, there is no current
need for the LightEdge component, which is a lightweight, ETSI-compliant MEC solution. Since there are
no clear requirements for MEC services in the current demonstrator, a normal Edge Server solution will
be used instead. Moreover, if slices are required for the purposes of the demo, these will be pre-
provisioned instead of using the Slice Manager.

Furthermore, the component TC2.1.1 Data Collection Module described in D1.3 is no longer pertinent to
the system, as it was made evident that the focus should be on the collection and analysis of factors and
skills of the users as a one-time process. Therefore, the collection of user input has been performed
through online questionnaires, as reported in deliverable D2.1.

Additionally, TC4.6.1 Commissioning of Hardware Components in CPSs has also been removed, as its
functionalities have been covered by joint efforts of partners UOP and TAU in other components.

Finally, two new technical components are introduced in this version of the architecture, TC4.5.1 Semantic
Knowledge Graph and TC4.5.2 Semantic Knowledge Graph Service.

Table 1 - System decomposition to Technical Components

ID Name Description Related Tasks Partner

1 TC2.2.1 Intra-Communication
Sim Tool

Tool designed and implemented
to match network requirements
imposed by the application and
deployed CPSoS to proposed
network technologies and
configurations (e.g., modulation,
signal strength, duty cycle etc.)
and network topologies. The tool
will be based on the NS3
simulator, and it will be built
based on experimentation on
models of dominant wireless
protocols for intra-
communication, e.g., BLE,
ZigBee/802.15.4, Wi-Fi.

T2.2 CPS Inter and Intra
Communication Models

UOP

2 TC2.2.2 PoCL-remote Scalable distributed OpenCL
runtime layer with P2P event
synchronization capabilities.

T2.2 CPS Inter and Intra
Communication Models

T3.2 Design and Develop
CPS Layer CPSoSaware
Deployment/Commissioning
and Execution Mechanism.

TAU

14

3 TC2.3.1 Hardware Accelerator
IP Cores

This refers to FPGA-based IP core
components. The FPGA IP cores
will be automatically generated
from higher-level models by using
an appropriate ML framework,
whenever feasible. The IP cores
will be seamlessly integrated in
the PoCL-based OpenCL run-time
system by means of a hardware
abstraction layer (AlmaIF).

T2.3 CPS Models for HW &
SW components

UOP

4 TC2.3.2 Security Accelerators
for CPS security
agents/sensors

FPGA based IP core components
(interfaces) focused on
security/cryptography.

T2.3 CPS Models for HW &
SW components

T2.4 Modeling of non-
Functional Requirements
and Security Functionality

USI

5 TC2.3.3 Model transformation
to openCL

The AlmaIF protocol (interface
between the host cpu and the
FPGA IPs) will be appropriately
extended to support the
requirements of the project in
terms of latency and bandwidth.
Based on the extended AlmaIF
protocol, specific OpenCL kernels
will be enhanced by HW
accelerations features in a
transparent-to-the-user way.

T2.3 CPS Models for HW &
SW components

T3.6 Development of HW-
SW Library with reliable
Components

T4.6 Model-based Design
and Redesign of CPSoS
Functional blocks
Realization

UOP

6 TC2.4.1 Xilinx XRT KPI
monitoring

The dynamic reconfiguration of
the FPGA-based IP core
components is implemented
using XRT (Xilinx run-time system)
functionality. Alternative HW
components can be selected in
real time by an application, based
on environmental or other
conditions. XRT allows the
switching to different hardware
components that can be
dynamically loaded. XRT also
allows the monitoring of the state
of the cores and other KPIs such
as the resources that have been
allocated at any time.

T2.4 Modeling of non-
Functional Requirements
and Security Functionality

T3.6 Development of HW-
SW Library with reliable
Components

T4.1 HW-SW Partitioning
Optimization based on non-
Functional Requirements

UOP

7 TC2.5.1 Modeling Orchestration
Tool

The modelling orchestration tool
captures the CPS overall,
manages individual CPS inputs
and outputs between other CPSs,
and orchestrates the CPSoS
components in order to achieve a
model of models.

T2.5 Integrated CPSoS
Modeling and orchestration
tools supporting autonomic
functionality

8BELLS

8 TC3.1.1 Visual Localization This component will act as a
multi-modal odometer solution,
aiming to fuse camera and LIDAR
based SLAM. A Python library will

Τ3.1 CP(H)S medium:
Enabling Multimodal
Sensing and Embedded

ISI

15

be constructed, containing state
of the art SLAM algorithms, as
well as the multi-modal fusion
scheme. This component aims to
offer increased robustness in
special cases like extreme
weather conditions, roads with
slope, etc.

Assisted and Augment
Intelligence

9 TC3.1.2 Deep Multimodal Scene
Understanding

The main objective of this module
is to derive the semantic
information within a given scene,
namely, understanding a scene.
This is the basis for autonomous
driving, traffic safety, vision-
guided manufacturing, or activity
recognition. This module will
deploy deep architectures to
derive semantic information from
a fusion of sensor data and the
fusion of their semantic
interpretation, since
understanding a scene from an
image or sequence of images
requires more effort than simple
feature extraction. RGB/Lidar,
RGB/depth data will be deployed,
and this module will include
algorithms and deep
architectures operating in
distributed or centralized manner
to define the operation of CPSs.

Τ3.1 CP(H)S medium:
Enabling Multimodal
Sensing and Embedded
Assisted and Augment
Intelligence

ISI

10 TC3.1.3 User Behaviour
Monitoring

The user behavioural monitoring
will be based on CPSoSaware’ s
collaborative sensory multi-modal
fusion mechanism and will be
based on algorithms for
physiological and behavioural
monitoring that will facilitate the
evaluation of cognitive
load/situational awareness
development of a smart sensing
module to allow inertial and
optical sensor fusion, providing
6DoF pose estimation, thus
dealing with occlusions and drifts.
The specificities of the algorithms
will be defined by the system
requirements and use cases.

Τ3.1 CP(H)S medium:
Enabling Multimodal
Sensing and Embedded
Assisted and Augment
Intelligence

UPAT

11 TC3.1.4 AI Acceleration The goal is the study of DCNN
acceleration / compression
techniques for their effective
implementation in embedded
platforms, lower the
computational cost (number of
operations, storage

Τ3.1 CP(H)S medium:
Enabling Multimodal
Sensing and Embedded
Assisted and Augment
Intelligence

ISI

16

requirements). With the least
possible loss in accuracy.

12 TC3.2.1 PoCL-accel This is a generic OpenCL driver
(for PoCL) to interface with
custom devices (hardware
accelerators) from the OpenCL
API.

T3.2 Design and Develop
CPS Layer CPSoSaware
Deployment/Commissioning
and Execution Mechanism.

TAU

13 TC3.3.1 Multimodal Localization
API

This component will implement a
software library (written mostly
in Python Programming
Language) of novel techniques for
multi-modal localization.
Combination of LiDAR data and
angle of arrival/departure will be
investigated for improved
cooperative localization. The
studied techniques will be
implemented via distributed
approaches.

Τ3.1 CP(H)S medium:
Enabling Multimodal
Sensing and Embedded
Assisted and Augment
Intelligence

T3.3 Distributed and
Coalitional AI supporting
autonomic intelligence

ISI

14 TC3.3.2 PathPlanning API This component will implement a
software library (written mostly
in Python Programming
Language) of novel techniques for
collaborative path planning.

Τ3.1 CP(H)S medium:
Enabling Multimodal
Sensing and Embedded
Assisted and Augment
Intelligence

T3.3 Distributed and
Coalitional AI supporting
autonomic intelligence

ISI

15 TC3.4.1 XR tools for increasing
situational awareness

AR-based enhancement tools to
improve the human in the loop
awareness. The tools should
facilitate the transfer of
information (streams, reminders,
or visual aids) to the user to
improve focus on the current
task, remember other parallel or
scheduled tasks, improve
response time, avoid imminent
dangers or accident-related
factors.

T3.4 CPHS Extended Reality
based tools for increasing
situational awareness

UPAT

16 TC3.5.1 CPS layer Security
sensors/agents

CPS layer Security sensors/agents
that collect security related data
and pre-process them before
transmitting them to the
CPSoSaware SRMM at the system
layer.

T3.5 Security and Trust
Modules Design and
Realization

USI

17 TC3.6.1 TCE (openasip.org) soft
cores

Customized processors designed
using TTA-Based Co-design
Environment (TCE), an open
source application-specific
instruction set toolset based on
the transport-triggered
architecture (TTA). Various
hardening features can be added

T3.6 Development of HW-
SW Library with reliable
Components

TAU

17

via replication of functionality
and special instructions.

18 TC4.1.1 OpenCL Wrapper for
Hardware IP Cores

OpenCL kernel description
interface to associate Hardware
IP cores with the OpenCL models.

T4.1 HW-SW Partitioning
Optimization based on non-
Functional Requirements

TAU

19 TC4.1.2 HW/SW profiling and
analysis based on Vitis
Tools

Profiling for a highly
heterogeneous platform
consisting of multicore ARM
processor, ASIP processors as well
as FPGA fixed logic IP. FPGA logic
is a “morphable” computation
resource without predefined
computational capabilities. All SW
nodes will be handled by PoCL,
enabling dynamic remapping and
re-scheduling opportunities.

T4.1 HW-SW Partitioning
Optimization based on non-
Functional Requirements

UOP

20 TC4.1.3 Architecture
Optimization

This component aims to provide
all necessary optimizations in
order to reconfigure and redesign
the System’s CPSs/CPHSs so as to
holistically match the systemic
design and operational
goals/parameters achieving
reliability, robustness,
responsiveness, CPS/CPHS
criticality, energy efficiency, and
security/trust.

T4.1 HW-SW Partitioning
Optimization based on non-
Functional Requirements

IBM

21 TC4.2.1 Intra-Communication
Manager

Mechanisms to supervise a
running network configuration in
a real deployment. The metrics
that reflect the application
requirements will be monitored
to provide feedback on whether
the application requirements are
met. Feedback will be extracted
as a structured file by the end of
each experiment on real
deployments. The extracted
feedback file will be used for
further optimization during the
simulation time. On the other
hand, mechanisms allowing the
reception of new network
interface firmware or/and
configuration file and application
of these on the embedded
platform.

T4.2 CPSoSaware
Networking for reliable
communication and
cooperation between
CP(H)SoS

UOP

22 TC4.3.1 Security Runtime
Monitoring

This tool collects, processes,
analyses and correlates security
monitoring information coming
from a set of heterogeneous data
sources in order to detect
abnormal events taking place and
raise the corresponding alarms
for immediate human reaction.

T4.3 CPSoSaware Security
Runtime monitoring and
Management (SRMM)
Design and Development

ATOS

18

This component operates in real-
time.

23 TC4.4.1 V2X simulator Two simulator components:

1) Vehicle mobility simulator:
Simulator based on SUMO that
provide datasets with the
movement of vehicles and
Vulnerable Road Users in specific
road networks. This simulator is
able to generate collisions
between vehicles and between
vehicles and Vulnerable Road
Users.

2) V2X message transmission
simulator: Using the previous
information of vehicles
movement, this simulator, which
is based on OMNeT++ and
Vanetza, simulates the
transmission of V2X messages
using IEEE 802.11p and LTE-PC5
radio technologies considering
realistic propagation models,
taking into account the
attenuation produced by buildings
and the interference between
messages simultaneously
transmitted.

The outcomes enable to obtain
KPIs about the behavior of V2X
communications and the
improvement that applications
using V2X information get.
Moreover, the V2X simulator
produces datasets with V2X
messages received by vehicles
that can be used by other
CPSoSAware system components
as input.

T4.4 CPSoS Simulation Tools
and integration

I2CAT

24 TC4.4.3 AV Simulation This is a simulator based on one
of the available open-source
solutions with additional
CPSoSaware-related modules,
enabling advanced simulation of
all scenarios and integration with
other simulations (V2X, HIL,
cybersecurity, DMS, etc.).
Simulation of sensors,
cyberattacks, communication
with vehicles and infrastructure.

T4.4 CPSoS Simulation Tools
and integration

RTC

25 TC4.5.1 Semantic Knowledge
Graph

W3C-compliant semantic model
for representing and interrelating
concepts pertinent to the two
project use cases. Its aim is to
store analysis results/outputs

T4.5 Cognitive System AI-
assisted maintenance and
CPSoS lifecycle Design
Continuum Support

CTL

19

from other CPSoSaware
components in a homogeneous
fashion.

26 TC4.5.2 Semantic Knowledge
Graph Service

Software running on-top of
TC4.5.1 (Semantic Knowledge
Graph) for populating the
semantic model with instance
data (i.e., outputs from other
components) and for applying
rule-based semantic reasoning for
the purposes of generating alerts
and reports.

T4.5 Cognitive System AI-
assisted maintenance and
CPSoS lifecycle Design
Continuum Support

CTL

27 TC5.1.1 HLS based SW to HW
Transformation

HLS based synthesized HW
components with PoCL
compatible interfaces.

T5.1 SW/HW Generation of
non-functional property
enhancements

UOP

28 TC5.3.1 Extended Reality
lifelong learning
tools/Interfaces for
integrated CPSoS

An AR-based CPHS user training
toolkit will be developed to help
the user adapt to changes in the
environment and the dynamic
CPSoS, whether these may
concern a new machine that is
added in the system or some new
task process. Users often
encounter strong outer
constraints such as time or
occupation, thus more immersive
technologies aim to better exploit
the uniqueness of AR and
designing more effective virtual
environments to improve the
learning process. Virtual training
scenarios will cover a broad range
of user-desired activities.

T5.3 Extended Reality
lifelong learning
tools/Interfaces for
integrated CPSoS

UPAT

29 TC5.3.2 Manufacturing
Environment Simulation

This component is a simulator
that provides the flexibility to
simulate a workspace at various
resolutions, depending on the
available computational power,
and different scenarios while at
the same time maintaining the
ability to store rich information
for high-dimensional workspaces.
The simulator provides
immersive, gamified experiences
in virtual or augmented reality
during training and learning. It is
also used to investigate the effect
of advanced interfaces in
augmented reality that increase
the operators’ awareness and
safety in the best possible way.

T5.3 Extended Reality
lifelong learning
tools/Interfaces for
integrated CPSoS

UPAT

Subsequently, the following subsections present technical specifications, hardware/software
requirements, deployment, and interfacing details per technical component.

20

3.1.1 TC2.2.1 Intra-Communication Sim Tool

Type (Software/Hardware) Software

Methodologies Modelling of the user requirements to extract network requirements to feed the
tool will be needed. The tool will initiate its mode based on heuristics and after
repetitive simulations more fine - grained adjustments on the network
configurations will be performed. When the simulation confirms that the application
requirements are met the running network configuration will be extracted as the
output of the tool and optimum operation point. When multiple network
configurations meet application requirements, multiple propositions will be made,
and the final configuration can be made manually or automatically based on
priorities set by the application requirements (e.g. power conservation over delay
minimization or vice versa etc.). When the application requirements are not met,
optimum solutions will be proposed (e.g., a network configuration guaranteeing 90%
mean delay and/or 60% delay jitter and/or 80% packet loss with respect to what is
required).

Development Environment C++ for model development and Python for API

Software Requirements As introduced by NS3 simulator

Hardware Requirements PC/VM/Cloud, Selected CPSoS embedded systems/platforms support defined intra-
communication network interfaces.

Containerization Yes

Execution Time Depends on Simulation Scenario.

Execution Frequency Continuously (API calls)

Main Inputs Network configurations through HTTP requests.

Nature of Expected Input JSON

Main Outputs Network metrics (delay, throughput etc..)

Nature of Expected Output JSON

3.1.2 TC2.2.2 PoCL-Remote

Type (Software/Hardware) Software

Methodologies Client-server and proxy software architectures are used in the layer to support
efficient decentralized control of a platform with network distributed OpenCL
devices.

Development Environment C/C++/Python API available

Software Requirements Linux. Should be easily portable to real time OSs with simple Unix compatibility
layers. Even OS-less environment could be realistic if needed.

Hardware Requirements OpenCL-supported devices. PoCL can be used to provide OpenCL support for various
devices.

Containerization Yes

Execution Time Application specific

Execution Frequency Application specific

Main Inputs OpenCL application definitions along with their kernels. OpenCL driver for
proprietary GPUs and custom devices (via PoCL).

Nature of Expected Input C/C++/Python programs, preferably split to OpenCL host and kernel programs.

21

Main Outputs Application specific

Nature of Expected Output ASCII or raw files, object detection labels, or what applies to the case at hand.

3.1.3 TC2.3.1 HW Accelerator IP Cores

Type (Software/Hardware) Hardware and associated Software drivers

Methodologies Hardware component design and implementation techniques (VHDL based design,
efficiency optimization techniques)

Development Environment The component will be developed using hardware description language (e.g VHDL)
and possible association with OpenCL.

Software Requirements Embedded system and hardware design and development tools for IP Core creation.

Hardware Requirements Embedded devices with System on Chip that has FPG fabric (e.g., Xilinx Zynq,
Ultrascale).

Containerization N/A

Execution Time Within milliseconds.

Execution Frequency Operating as part of a HW/SW partitioning environment whenever hardware
acceleration is needed.

Main Inputs Specifications on ML algorithms.

Nature of Expected Input Formal specifications, Model of computing components

Main Outputs Hardware IP Cores for Acceleration of ML operation

Nature of Expected Output Model in VHDL, Hardware IP core library components

3.1.4 TC2.3.2 Security Accelerators for CPS security agents/sensors

Type (Software/Hardware) Hardware and associated Software drivers

Methodologies Hardware component design and implementation techniques (VHDL based design,
efficiency optimization techniques, security strengthening techniques for security
components).

Development Environment The component will be developed using hardware description language (e.g VHDL)
and possible association with OpenCL.

Software Requirements Embedded system and hardware design and development tools for IP Core creation.

Hardware Requirements Embedded devices with System on Chip that has FPGA fabric (e.g., Xilinx Zynq,
Ultrascale).

Containerization N/A

Execution Time Within milliseconds.

Execution Frequency Operating as part of a HW/SW partitioning environment whenever hardware
acceleration is need.

Main Inputs Specifications on Security approach and CPS security sensors/agents.

Nature of Expected Input Formal specifications, Model of computing components.

Main Outputs Hardware IP Cores for Acceleration of Security/Cryptography.

Nature of Expected Output Model in VHDL, Hardware IP core library components.

22

3.1.5 TC2.3.3 Model transformation to OpenCL

Type (Software/Hardware) Hardware and associated Software drivers

Methodologies The AlmaIF protocol (interface between the host CPU and the FPGA IPs) will be
appropriately extended to support the requirements of the project in terms of
latency and bandwidth. Based on the extended AlmaIF protocol, specific OpenCL
kernels will be enhanced by HW accelerations features in a transparent-to-the-user
way.

Development Environment Xilinx Vitis, HLS, Vivado, C++, OpenCL

Software Requirements Embedded system and hardware design and development tools for IP Core creation.

Hardware Requirements Embedded devices with System on Chip that has FPGA fabric (e.g., Xilinx Zynq,
Ultrascale).

Containerization N/A

Execution Time Within milliseconds

Execution Frequency Application specific

Main Inputs OpenCL kernel programs and high-performance FPGA buses specifications

Nature of Expected Input OpenCL kernels and C/C++ python programs

Main Outputs Portable and plug-and-play FPGA IP cores

Nature of Expected Output Hardware IP cores (in HLS) and associated Linux device drivers

3.1.6 TC2.4.1 Xilinx XRT KPI monitoring

Type (Software/Hardware) Software

Methodologies Dynamic loading of hardware core bitsreams stored locally or remotely, monitoring
the status of the employed hardware cores.

Development Environment Xilinx Vitis, XRT, Vivado, C++, OpenCL VHDL

Software Requirements host computer with Ubuntu OS where Xilinx Vitis, XRT and Vivado have been
installed. Petalinux OS runs on the target FPGA system.

Hardware Requirements At least 16GB RAM, 200GB of storage and i5 (or faster architecture) is required for
the host computer where the applications are developed. Target boards require
Ultrascale architectures.

Containerization Yes. XRT offers a container environment where the applications are developed based
on specific templates.

Execution Time In the order of few milliseconds.

Execution Frequency Target: 200MHz or higher.

Main Inputs For the DSM application the inputs can be the environmental lighting conditions,
gender information, etc.

Nature of Expected Input Environmental sensors or outputs of other modules (e.g., face recognition).

Main Outputs List of hardware cores running, their speed, memory requirements, resources
allocated, etc.

Nature of Expected Output KPIs represented as numbers, sizes, descriptions etc.

23

3.1.7 TC2.5.1 Modelling Orchestration Tool

Type (Software/Hardware) Software

Methodologies Agile Software Development

Development Environment Python

Software Requirements UI libraries in Python (Tkinder) and Jenkins pipelines for CI/CD.

Hardware Requirements Standard Desktop

Containerization No

Execution Time Within seconds

Execution Frequency Event-driven

Main Inputs Selection of Simulation tools and configurations from user.

Nature of Expected Input Selection from user via UI.

Main Outputs Decisions on how each CPS simulation model will be orchestrated at event, KPIs to
drive the decision and model adjustment.

Nature of Expected Output Results for each simulator individually.

3.1.8 TC3.1.1 Visual Localization

Type (Software/Hardware) Software

Methodologies LiDAR and image processing: ring estimation, curb detection, road estimation using
the candidate curbs, object recognition using classification approaches.

Development Environment Python

Software Requirements Vision problems via multi-modal odometers solutions.

Hardware Requirements Embedded devices with AI accelerators (e.g., Xilinx Vitis).

Containerization No

Execution Time Within milliseconds.

Execution Frequency In each incoming scene/frame.

Main Inputs LiDAR Data, Images from PASEU, Simulator (e.g., CARLA) and available datasets (e.g.,
Lyft).

Nature of Expected Input Data from CAN bus, image Files, point cloud files.

Main Outputs Location estimation of vehicle, location estimation of obstacles, robustification to
data anomalies and outliers.

Nature of Expected Output Time series

3.1.9 TC3.1.2 Deep Multimodal Scene Understanding

Type (Software/Hardware) Software

Methodologies Vision problems via deep learning solutions.

Development Environment Python, TensorFlow

Software Requirements TensorFlow API

24

Hardware Requirements Embedded devices with AI accelerators (e.g., Xilinx Vitis).

Containerization Yes

Execution Time 40 fps

Execution Frequency In each incoming scene/frame.

Main Inputs The dataset used for training will be based on 3 major pillars: (a) synthetic dataset,
(b) real dataset, (c) augmented data. Throughout the following subsections the
criteria for structuring the dataset will be extensively discussed.

Nature of Expected Input Images, point clouds

Main Outputs Score and detected objects in scenes.

Nature of Expected Output Annotated images and point clouds.

3.1.10 TC3.1.3 User Behaviour Monitoring

Type (Software/Hardware) Software

Methodologies Development of vision technology based on onboard units will provide measures of
drowsiness. Direct measures, such as eye closure and blink analysis. Indirect measures
based on longitudinal and lateral control.

Development Environment Python, C++, MATLAB

Software Requirements No special software requirements.

Hardware Requirements Video capturing devices.

Containerization Yes

Execution Time Real-time

Execution Frequency Continuously (event-based)

Main Inputs Direct measures of drowsiness: eye closure and blink analysis

Indirect measures of drowsiness:

Driving performance measure: speed (mean and variability) and distance control
(distance to lead vehicle).

Driver activity measure: pedal activity (driver’s use of pedals).

Driving performance measure: lane keeping performance (standard deviation of the
lateral position, time to line crossing, number of lane crossings, mean lateral position,
mean yaw rate).

Driver activity measure: steering behaviour (magnitude and frequency of steering
activity), steering variability, slow and fast steering corrections.

Nature of Expected Input Data from CAN bus, Images Files, real time data streams, video.

Main Outputs Level of Drowsiness (Indicator values between a range of measurements), warning
signs.

Nature of Expected Output Time series, text

3.1.11 TC3.1.4 AI Acceleration

Type (Software/Hardware) Software

Methodologies We focus on the following methodologies for model compression and acceleration:

25

1) Parameter pruning: Unimportant parameters (e.g., filters) are removed and not
considered during the inference phase of the DCNN deployment.

2) Codebook-based parameter sharing: Such approaches aim at increasing common
representations of the involved parameters via the design of codebooks (e.g., k-
means-based, dictionary-learning-based).

Development Environment Python, MATLAB

Software Requirements Machine learning libraries in Python / MATLAB. Auxiliary libraries like for
input/output functions, programming interface and evaluation.

Hardware Requirements Embedded devices with AI accelerators (e.g., Xilinx Vitis).

Containerization No

Execution Time Within milliseconds.

Execution Frequency Between 15 and 30 fps.

Main Inputs LiDAR data, images from PASEU, simulator (e.g., CARLA) and available datasets (e.g.,
Lyft).

Nature of Expected Input Data from CAN bus, images files, point cloud files.

Main Outputs Accelerated networks in ONNX.

Nature of Expected Output Time series

3.1.12 TC3.2.1 PoCL-Accel

Type (Software/Hardware) Software

Methodologies The method to provide portability across FPGA-based IPs and other hardware
accelerators, programmable and non-programmable is done through standardized IP
wrappers which are interfaced with a common software driver integrated to the
PoCL OpenCL driver framework.

Development Environment C/C++, Linux

Software Requirements C compiler

Hardware Requirements FPGA chip. SoC and discrete PCIe card-based ones have been tested.

Containerization Yes

Execution Time Depends on the accelerated function.

Execution Frequency Depends on the accelerated function.

Main Inputs Generic, depends on the accelerator.

Nature of Expected Input Generic, depends on the accelerator.

Main Outputs Generic, depends on the accelerator.

Nature of Expected Output Generic, depends on the accelerator.

3.1.13 TC3.3.1 Multimodal Localization API

Type (Software/Hardware) Software

Methodologies Cooperative localization (CL) has been an active area of research over the last years
as it presents several advantages over traditional single vehicle, robots and mobile
IoT systems, like robustness, increased efficiency, information exchange and
increased virtual sensing capability. It has received extensive interest from robotics,

26

optimization and wireless communication communities. Due to the aforementioned
benefits, CL has been widely used in a large variety of applications, including
navigation of autonomous ground and aerial vehicles, target tracking and time
synchronised path following.

Development Environment Python

Software Requirements Machine learning libraries in Python. Auxiliary libraries like for input/output
functions, programming interface and evaluation.

Hardware Requirements Embedded devices with AI accelerators (e.g., Xilinx Vitis).

Containerization Yes

Execution Time Within milliseconds, depending on the hardware and network capabilities.

Execution Frequency Every 100-300 ms (depending on the arrival of measurements from GPS and
neighbors).

Main Inputs Simulator (e.g., CARLA) and available datasets.

Nature of Expected Input JSON, data from CAN bus.

Main Outputs Collaborative algorithms that accurately estimate nearby objects’ locations.

Nature of Expected Output Python script files.

3.1.14 TC3.3.2 PathPlanning API

Type (Software/Hardware) Software

Methodologies A mobile network system is deployed in a cluttered environment to achieve common
mission within a changing environment. This networked vehicle system experiences
some uncertainties in navigation and sensing during its mission. On the other hand,
networked vehicles must plan their paths to avoid collision with environmental
obstacles and other vehicles. Moreover, vehicles should maintain certain
connectivity constraints such as the coordination task can be accomplished. Since
vehicles are to provide a wireless communication infrastructure, the motion
planning problem needs to incorporate wireless communication constraints.
Moreover, Human-in-the-loop constraints will also have to be incorporated, to
include indirect measures of drowsiness. This will create a multi-objective decision-
making problem in which optimum motion planning decisions considering only one
criterion may not be the best solution to cover all objectives and limitations.

Development Environment Python

Software Requirements Machine learning libraries in Pyhton. Auxiliary libraries like for input/output
functions, programming interface and evaluation.

Hardware Requirements Embedded devices with AI accelarators (e.g., Xilinx Vitis).

Containerization Yes

Execution Time Within milliseconds, depending on the hardware and network capabilities.

Execution Frequency Every 100-300 ms (depending on the arrival of measurements from GPS and
neighbors)

Main Inputs Simulator (e.g., CARLA) and available datasets.

Nature of Expected Input JSON, data from CAN bus.

Main Outputs Collaborative algorithms that optimally determine the future driving actions of self
and nearby vehicles.

Nature of Expected Output Python script files.

27

3.1.15 TC3.4.1 XR tools for increasing situational awareness

Type (Software/Hardware) Software

Methodologies Different augmented reality techniques using AR Glasses, mobile devices, and
marker-less tracking, will be implemented. Multi-modal projections that visually
describe the significant environment parameters will act as guidelines through
situations with high task load in challenging and multi-tasking environments.

Development Environment Python, C++, MATLAB

Software Requirements No special software requirements.

Hardware Requirements Devices that could provide AR output.

Containerization Yes

Execution Time Within milliseconds or in the range of a LIDAR frame.

Execution Frequency Continuously (event-based).

Main Inputs Eye gaze / head direction / hand gestures.

Physiological values of users (temperature, heart rate, inhalation, etc.,).

Environmental values, measurements by sensors and feedback by other parallel
processes of the pipeline.

Captured scene (e.g., point cloud) for an objects-of-interest analysis or scene analysis
and understanding.

Localization (GPS).

Personalized information related to each user.

Collaborative information (e.g., from other drivers or colleagues).

Nature of Expected Input Three types: 1) real-time data streams (time series) and 2) historic measurements
(scalars or time series) 3) 3D points clouds or meshes (geometry).

Main Outputs Pop up messages (alerts, warnings, notificasions/suggestions, information).

Real time visualization (i.e., transparent plans, trajectories etc.).

Augmented static or dynamic 3D objects and simulation.

Sounds.

Nature of Expected Output Text, time series, 3D geometry, sound.

3.1.16 TC3.5.1 CPS layer Security sensors/agents

Type (Software/Hardware) Hardware and associated Software drivers

Methodologies Low-level C code driver development and trusted OS integration using dedicated
security/cryptography hardware accelerator peripherals.

Development Environment Xilinx Software Development Kit

Software Requirements Embedded system and hardware design and development tools for IP Core creation.

Hardware Requirements Embedded devices with System on Chip that have FPGA fabric (e.g., Xilinx Zynq,
Ultrascale).

Containerization N/A

Execution Time Within milliseconds.

Execution Frequency Operating as part of a HW/SW partitioning environment whenever security
functionality if needed (running constantly on the CPS layer)

28

Main Inputs Specifications on Security approach and CPS security sensors/agents, Hardware
dedicated IP Core accelerator models and libraries.

Nature of Expected Input Formal specifications, IP Core libraries (also posibly OpenCL kernels).

Main Outputs Executables and security-hardened/trusted OS structures, kernel mode security
drivers.

Nature of Expected Output Executable software

3.1.17 TC3.6.1 TCE (openasip.org) soft cores

Type (Software/Hardware) Hardware and Software

Methodologies TCE is an application-specific processor design and programming toolset. Its open-
source repository is also called OpenASIP due to it being developed to support a
wider set of programming models than the original Transport Triggered Architecture,
which is in the core of the processor template of the toolset. The tool supports a
wide range of customization options, including register files, function units and their
operations, datapath connectivity, with retargetable instruction-set simulators,
compilers and RTL generators driven by an architecture description file.

Development Environment C/C++/VHDL

Software Requirements Tools run on Linux-based desktops, possibly MacOS (unsupported).

Hardware Requirements Application specific.

Containerization Yes

Execution Time Application specific.

Execution Frequency Application specific.

Main Inputs C/C++/OpenCL C description of the application and the non-functional requirements.

Nature of Expected Input Preferably a C/C++/OpenCL C implementation which can be gradually transferred
(co-designed) to a customized processor.

Main Outputs Application specific.

Nature of Expected Output ASCII or raw files, object detection labels, or what applies to the case at hand.

3.1.18 TC4.1.1 OpenCL Wrapper for Hardware IP Cores

Type (Software/Hardware) Hardware and associated Software drivers

Methodologies OpenCL kernel specification

Development Environment Xilinx toolbox (Vitis, SDx Tools) or similar opensource components, PoCL.

Software Requirements Embedded system and hardware design and development tools for IP Core creation.

Hardware Requirements Embedded devices with System on Chip that has FPG fabric (e.g., Xilinx Zynq,
Ultrascale).

Containerization Ν/Α

Execution Time Within milliseconds.

Execution Frequency Operating as part of a HW/SW partitioning environment whenever hardware
acceleration is need.

Main Inputs Hardware IP Core models and IP Core libraries.

29

Nature of Expected Input IP Core libraries, specification, models, interfaces.

Main Outputs OpenCL kernels for integration to OpenCL schemas and CPS models.

Nature of Expected Output OpenCL kernel libraries.

3.1.19 TC4.1.2 HW/SW profiling and analysis based on Vitis Tools

Type (Software/Hardware) Software

Methodologies Profiling is used to recognize the computationally intensive modules that can be
accelerated in hardware in a heterogeneous platform consisting of multicore ARM
processor, ASIP processors as well as reconfigurable hardware. Xilinx Vitis will be
used to offer accurate profiling and speed estimation mechanisms.

Development Environment Xilinx Vitis, XRT, Vivado, C++, OpenCL

Software Requirements Ubuntu OS on the host computer where Xilinx Vitis, XRT and Vivado have been
installed. The OS running on the target FPGA system is Petalinux.

Hardware Requirements At least 16GB RAM, 200GB of storage and i5 (or faster architecture) is required for
the host computer where the applications are developed. Target boards with
Ultrascale architecture are used.

Containerization Yes, Vitis offers a containerized environment where profiling can be performed.

Execution Time Profile time of the components analysed are expected to range up to some hundreds
of milliseconds.

Execution Frequency Target: 200MHz or higher

Main Inputs Simulation stimuli, application to profile.

Nature of Expected Input List of events that occur in the input signals, platform under analysis with the
implementation of the components (C++ or VHDL).

Main Outputs Latency of the various components (hardware and software).

Nature of Expected Output Latency measured in milliseconds. Average values extracted statistically.

3.1.20 TC4.1.3 Architecture Optimization

Type (Software/Hardware) Software

Methodologies Mathematical optimization

Development Environment Python, PyCharm, C++

Software Requirements IBM CPLEX or another MILP solver

Hardware Requirements 16GB RAM, 100GB storage, i7 or faster CPU

Containerization Docker, Kubernetes

Execution Time 90s

Execution Frequency Design time

Main Inputs Hardware platforms, desired functionality

Nature of Expected Input List of hardware platforms and software libraries together with capabilities, list of
functional units with requirements and inter-dependencies

Main Outputs Execution locations

30

Nature of Expected Output List of functional units together with hardware platform or software library where
the functionality will be implemented

3.1.21 TC4.2.1 Intra-Communication Manager

Type (Software/Hardware) Software

Methodologies Open network stacks will be used to implement watchers, watchdogs and
monitoring structures based on application requirements and network performance
metrics.

Development Environment Python Development Environment

Software Requirements Open network stacks

Hardware Requirements At least 2 network interfaces available supporting 2 different selected wireless
technologies for intra - communication accordingly.

Containerization Yes

Execution Time Depends on the underlying network interface.

Execution Frequency Continuously (event-based)

Main Inputs Intra layer communication requirements through MQTT messages

Nature of Expected Input JSON

Main Outputs Available Open network stacks configurations to meet the input requirements.

Assessment of network performance with regards to application requirements.

Report of the configuration applied to the target platform.

Nature of Expected Output Network configuration files.

3.1.22 TC4.3.1 Security Runtime Monitoring

Type (Software/Hardware) Software

Methodologies The development of the SRMM does not follow any specific methodology. Very
elementary cohabitation rules have been applied in the internal GitLab environment
leveraged for implementation activities, which have shown to suffice for the
achievement of the different milestones.

Development Environment An internal Gitlab environment has been setup. The different extensions are
developed in separate branches and smoothly integrated in the main one
performing rigorous testing sessions, including regression tests.

Software Requirements A Linux OS has to be in place to run the SRMM. If the dockerized version will be run,
it must include Docker in the installation.

Hardware Requirements Between 30 and 50 Gbs of free disk space. For processing capabilities, a minimum of
4 virtual cores is requested, being convenient to have 8 available. As for RAM
memory, 4Gb could suffice for very optimized testing sessions, but 8 Gb are much
more convenient.

Containerization Yes

Execution Time Around 500 ms from event collection to alarm generation.

Execution Frequency Constantly receiving events.

Main Inputs Events and logs received, through syslog, from tools and security probes.

31

Nature of Expected Input JSON with security alert information.

Main Outputs Information about an incident detected (affected device, type of incident, etc).

Nature of Expected Output Security alerts as a JSON.

3.1.23 TC4.4.1 V2X simulator

Type (Software/Hardware) Software

Methodologies The simulator is implemented in two blocks:

1) Vehicle mobility generator: This block is based in SUMO which has been upgraded
to build scenarios of specific road networks with rear-end collisions, collisions
produced because of a red-light violation and the inclusion of Vulnerable Road Users
(pedestrians and bicycles) with predetermined trajectories in sidewalks, in bicycle's
lanes and in standard vehicle's lanes. This mobility generator will be used to build up
the scenarios of task T6.3 during the third year of the project.

2) V2X message transmission: This simulator, which is based in OMNeT++ and Vanetza,
takes the road network map and the vehicle mobility pattern, previously generated
by the vehicle mobility generator, and simulates the V2X message transmission
between vehicles using IEEE 802.11p and LTE-PC5 radio technologies plus ETSI G5
communication protocol stack. The raw output of this simulation is the time and
position where vehicles have transmitted and received V2X messages. With this
information, another software tool computes the transmission packet error ratio,
neighbour awareness ratio, errors between the registered position of specific vehicles
in the Local Dynamic Map and their real position and other statistics that may be
implemented during the third year of CPSoSAware project.

Additionally, the traces of V2X messages received by specific vehicles can be used as
input of other components of the CPSoSAware system. The main interest of this data
is that it has been computed with high precision transmission models taking into
account radio propagation models, presence of buildings which attenuate the radio
signal, interferences between simultaneous transmissions of different vehicles and
the simulation of the Medium Access Control mechanism used for the radio
technology.

Development Environment Simulator is developed in C++ and phyton.

Software Requirements OMNeT++, SUMO, Vanetza

Hardware Requirements Standard Intel PC (e.g. i7).

Containerization Yes

Execution Time Largely dependent on the complexity of the model (e.g. number of cars). A complex
simulation can take > 24 hours.

Execution Frequency N/A

Main Inputs Configuration parameters of the use case to study:

• Geographical situation: Road network (lanes, intersections, traffic signals, ...).

• Involved actors: Number of vehicles, presence of Vulnerable Road Users
(pedestrians and bicycles).

• Actor's behaviour: Vehicle's and Vulnerable Road Users' trajectories, presence,
and type of collisions between vehicles and/or Vulnerable Road Users.

• V2X message transmission: Type of messages, size of payload, propagation
model.

32

Nature of Expected Input Configuration files which some of them are provided by OMNeT++ and SUMO
frameworks and others are built using specific applications. They require specific
information depending on the simulated use case:

• Road network is manually defined or obtained using data of OpenStreetMap.

• Number and trajectories of vehicles and Vulnerable Road Users are defined
manually or in an autonomous random way. Vehicles on the same lane use the
Krauss car-following model.

• Collisions are produced depending on the driver's behaviour that is set
manually.

• V2X communication parameters are set manually.

Main Outputs 1) Statistics about the performance parameters of:

• Influence of V2X communications in the accuracy of the knowledge that
vehicles may have about the real position of their neighbour vehicles and
Vulnerable Road Users.

• Time to collision computation.

• Dangerous level of driving events.

• V2X communication protocol and radio technology.

 2) File with the V2X messages that vehicles receive. This information is used as input
of other components of CPSoSAware system.

Nature of Expected Output Any type of text file (e.g. CSV).

The following table specifies the V2X Simulator solution developed by ROBOTEC.

Type (Software/Hardware) Software

Methodologies Mathematical modeling of wave propagation, separation of layers and modular
structure – V2X simulator can be run on different computer than simulator

Development Environment Simulator is developed in C++

Software Requirements Depends on selected open-source simulator (Carla, LGSVL simulator, AirSim, Robotec
Simulator), needs ROS2.

Hardware Requirements Standard Intel PC (e.g. i7).

Containerization Yes

Execution Time Dependent on the complexity of the model (e.g. number of cars, propagation model).

Execution Frequency N/A

Main Inputs Environment, vehicles position, dynamic objects, propagation model

Nature of Expected Input ROS2 messages with simple structures

Main Outputs Distance beetween vehicles

Nature of Expected Output ROS2 message with distance beetween certain vehicle and all others

3.1.24 TC4.4.3 AV Simulation

Type (Software/Hardware) Software

Methodologies Agile, modular structure

33

Development Environment Depends on selected open-source simulator. After state-of-the-art analysis of
available simulators performed in D1.1, the following simulators were selected: Carla,
LGSVL simulator, Robotec Simulator.

Software Requirements Depends on selected open-source simulator (Carla, LGSVL simulator, AirSim, Robotec
Simulator).

Hardware Requirements Depends on selected open-source simulator (Carla, LGSVL simulator, AirSim, Robotec
Simulator).

Containerization Yes

Execution Time Depends on scenario.

Execution Frequency > 20FPS

Main Inputs Vehicle models, control algorithms, predefined control scenarios.

Nature of Expected Input Configuration files defining test scenarios

Main Outputs Collected Data, metrics for validation, photorealistic visualization of system
behaviour.

Nature of Expected Output Datasets for perception (images, point clouds and CSV with labels), reports of
scenarios validation.

3.1.25 TC4.5.1 Semantic Knowledge Graph

Type (Software/Hardware) Software

Methodologies NeOn ontology engineering methodology; adoption of W3C-recommended
standards.

Development Environment Protégé ontology editor

Software Requirements SPARQL-enabled RDF triplestore (e.g., GraphDB free edition)

Hardware Requirements 8GB RAM, 100 GB SSD

Containerization Yes

Execution Time N/A

Execution Frequency Continuous

Main Inputs Analysis results generated by other CPSoSaware components

Nature of Expected Input Parameterizable SPARQL queries

Main Outputs Results from execution of rules: e.g., risk levels, error estimations etc.

Nature of Expected Output SPARQL query result-sets as JSON.

3.1.26 TC4.5.2 Semantic Knowledge Graph Service

Type (Software/Hardware) Software

Methodologies Semantic data integration (ontology population); rule-based semantic reasoning.

Development Environment Python

Software Requirements REST API libraries, SPARQLWrapper, TC4.5.1 Semantic Knowledge Graph

Hardware Requirements 2GB RAM, 1GB SSD

Containerization Yes

34

Execution Time Varies depending on the complexity of requests. Usually within 1-3 seconds.

Execution Frequency Continuously (event-based).

Main Inputs Post and Get HTTP requests from other CPSoSaware components for the insertion of
knowledge to and retrieval of knowledge from TC4.5.1 correspondingly.

Nature of Expected Input JSON

Main Outputs Knowledge stored in TC4.5.1, augmented with results from semantic reasoning.

Nature of Expected Output JSON

3.1.27 TC5.1.1 HLS based SW to HW Transformation

Type (Software/Hardware) Software

Methodologies HLS based synthesized HW components with PoCL compatible interfaces.

Development Environment Xilinx Vitis HLS, Vivado HLS, C/C++/VHDL, OpenCL

Software Requirements Ubuntu OS on the host computer where Xilinx Vitis, XRT and Vivado have been
installed. The OS running on the target FPGA system is Petalinux.

Hardware Requirements At least 16GB RAM, 200GB of storage and i5 (or faster architecture) is required for
the host computer where the applications are developed. Target boards with
Ultrascale or Zynq architecture are used.

Containerization Yes, Vitis offers a containerized environment for several services.

Execution Time Up to several minutes.

Execution Frequency Several times During the development of an application.

Main Inputs Software modules

Nature of Expected Input Descriptions in C++/OpenCL

Main Outputs Bitstreams of the hardware kernels

Nature of Expected Output HLS based synthesized HW components with PoCL compatible interfaces.

3.1.28 TC5.3.1 Extended Reality lifelong learning tools/Interfaces for integrated CPSoS

Type (Software/Hardware) Software

Methodologies Different augmented reality techniques using AR Glasses, mobile devices and marker-
less tracking, will be implemented. The task will develop off-site training solutions.

Development Environment Python, C++, MATLAB

Software Requirements No special software requirements

Hardware Requirements Devices that could provide AR output.

Containerization Yes

Execution Time Within milliseconds.

Execution Frequency Continuously (event-based)

Main Inputs Eye gaze, head direction, hand gestures.

Physiological values of the user (temperature, heart rate, inhalation, etc.,).

Environmental values, measurements by sensors and feedback by other parallel
processes of the pipeline.

35

Captured scene (e.g., point cloud).

Personalized information related to each user.

Collaborative information (e.g., from the instructor or other colleagues).

Nature of Expected Input Three types: 1) real-time data streams (time series) and 2) historic measurements
(scalars or time series) 3) 3D points clouds or meshes (geometry).

Main Outputs XR-based toolkit for training in VR, warning signs for the safety of human operator or
driver, 3D visualization of safe zones in AR/VR, a driving simulator with signs and
visual hints.

Nature of Expected Output Text, time series, 3D geometry and graphics.

3.1.29 TC5.3.2 Manufacturing Environment Simulation

Type (Software/Hardware) Software

Methodologies Emulation of robotic movements in a digital workspace in Unity3D as a prior
knowledge during runtime computation of (spatiotemporal) human-robot collision
risk.

Different rendering methods in Unity in VR/AR for static/dynamic safety zones

Development Environment C#, C++, Unity3D

Software Requirements No special software requirements

Hardware Requirements Devices that could provide VR/AR output and/or display monitor.

Containerization Yes

Execution Time Within milliseconds.

Execution Frequency >= 30FPS

Main Inputs Human behaviour models, predefined control scenarios, robot’s trajectory, operator’s
anthropometrics.

Nature of Expected Input Robot models, predefined scenarios

Main Outputs Collected Data, metrics for validation, photorealistic visualization of system
behaviour.

Nature of Expected Output Datasets for perception (images and CSV with labels). Reports of scenarios validation.

3.2 Dependencies and Interfaces Between System Components

Table 2 collectively presents the dependencies between technical components, as defined by the
technical partners. A dependency may be defined as a fulfilled or scheduled interaction of a component
with another, where there is usually an exchange of information, a trigger, or an integrated functionality.

36

Table 2 - Dependencies between Technical Components

Technical component interacts with / depends on

TC
2

.2
.1

 In
tr

a-
C

o
m

m
u

n
ic

at
io

n
 S

im
 T

o
o

l

TC
2

.2
.2

 P
o

C
L-

re
m

o
te

TC
2

.3
.1

 M
L

H
ar

d
w

ar
e

A
cc

el
er

at
o

r
IP

 C
o

re
s

TC
2

.3
.2

 S
ec

u
ri

ty
 A

cc
el

er
at

o
rs

 f
o

r
C

P
S

se
cu

ri
ty

ag

en
ts

/
se

n
so

rs

TC
2

.3
.3

 M
o

d
el

 t
ra

n
sf

o
rm

at
io

n
 t

o
 o

p
e

n
C

L

TC
2

.4
.1

 X
ili

n
x

X
R

T
K

P
I m

o
n

it
o

ri
n

g

TC
2

.5
.1

 M
o

d
el

lin
g

O
rc

h
es

tr
at

io
n

 T
o

o
l

TC
3

.1
.1

 V
is

u
al

 L
o

ca
liz

at
io

n

TC
3

.1
.2

 D
ee

p
 M

u
lt

im
o

d
al

 S
ce

n
e

U
n

d
er

st
an

d
in

g

TC
3

.1
.3

 U
se

r
B

eh
av

io
u

r
M

o
n

it
o

ri
n

g

TC
3

.1
.4

 A
I A

cc
el

er
at

io
n

TC
3

.2
.1

 P
o

C
L-

ac
ce

l

TC
3

.3
.1

 M
u

lt
im

o
d

al
 L

o
ca

liz
at

io
n

 A
P

I

TC
3

.3
.2

 P
at

h
P

la
n

n
in

g
A

P
I

TC
3

.4
.1

 X
R

 t
o

o
ls

 f
o

r
in

cr
ea

si
n

g
si

tu
at

io
n

al

aw
ar

en
es

s

TC
3

.5
.1

 C
P

S
la

ye
r

Se
cu

ri
ty

 s
en

so
rs

/a
ge

n
ts

TC
3

.6
.1

 T
C

E
(o

p
en

as
ip

.o
rg

)
so

ft
 c

o
re

s

TC
4

.1
.1

 O
p

en
C

L
W

ra
p

p
er

 f
o

r
H

ar
d

w
ar

e
IP

 C
o

re
s

TC
4

.1
.2

 H
W

/S
W

 p
ro

fi
lin

g
an

d
 a

n
al

ys
is

 b
as

ed
 o

n

V
it

is
 T

o
o

ls

TC
4

.1
.3

 A
rc

h
it

ec
tu

re
 O

p
ti

m
iz

at
io

n

TC
4

.2
.1

 In
tr

a-
C

o
m

m
u

n
ic

at
io

n
 M

an
ag

er

TC
4

.3
.1

 S
ec

u
ri

ty
 R

u
n

ti
m

e
M

o
n

it
o

ri
n

g

TC
4

.4
.1

 V
2X

 s
im

u
la

to
r

TC
5

.3
.2

 M
an

u
fa

ct
u

ri
n

g
En

vi
ro

n
m

en
t

Si
m

u
la

ti
o

n

TC
4

.4
.3

 A
V

 S
im

u
la

ti
o

n

TC
4

.5
.1

 S
em

an
ti

c
K

n
o

w
le

d
ge

 G
ra

p
h

TC
4

.5
.2

 S
em

an
ti

c
K

n
o

w
le

d
ge

 G
ra

p
h

 S
er

vi
ce

TC
5

.1
.1

 H
LS

 b
as

ed
 S

W
 t

o
 H

W
 T

ra
n

sf
o

rm
at

io
n

TC
5

.3
.1

 E
xt

en
d

ed
 R

ea
lit

y
lif

el
o

n
g

le
ar

n
in

g

to
o

ls
/I

n
te

rf
ac

es
 f

o
r

in
te

gr
at

ed
 C

P
So

S

TC2.2.1 Intra-Communication Sim Tool ✘ ✔ ✔

TC2.2.2 PoCL-remote ✔ ✘ ✔ ✔ ✔ ✔ ✔ ✔

TC2.3.1 ML Hardware Accelerator IP Cores ✘ ✔ ✔

TC2.3.2 Security Accelerators for CPS security
agents/sensors

 ✘

TC2.3.3 Model transformation to openCL ✔ ✘ ✔

TC2.4.1 Xilinx XRT KPI monitoring ✘ ✔

TC2.5.1 Modelling Orchestration Tool ✔ ✘ ✔ ✔ ✔ ✔ ✔

TC3.1.1 Visual Localization ✘ ✔ ✔

TC3.1.2 Deep Multimodal Scene Understanding ✔ ✔ ✔ ✘ ✔ ✔ ✔ ✔ ✔ ✔ ✔

TC3.1.3 User Behaviour Monitoring ✘ ✔ ✔

TC3.1.4 AI Acceleration ✔ ✘

TC3.2.1 PoCL-accel ✔ ✔ ✔ ✔ ✘ ✔ ✔

37

TC3.3.1 Multimodal Localization API ✔ ✔ ✔ ✘ ✔ ✔ ✔

TC3.3.2 PathPlanning API ✔ ✔ ✘ ✔ ✔

TC3.4.1 XR tools for increasing situational awareness ✔ ✘

TC3.5.1 CPS layer Security sensors/agents ✘ ✔ ✔

TC3.6.1 TCE (openasip.org) soft cores ✔ ✔ ✘ ✔

TC4.1.1 OpenCL Wrapper for Hardware IP Cores ✔ ✔ ✔ ✘

TC4.1.2 HW/SW profiling and analysis based on Vitis
Tools

 ✔ ✘

TC4.1.3 Architecture Optimization ✔ ✘

TC4.2.1 Intra-Communication Manager ✔ ✘

TC4.3.1 Security Runtime Monitoring ✔ ✔ ✘

TC4.4.1 V2X simulator ✔ ✔ ✔ ✘

TC5.3.2 Manufacturing Environment Simulation ✔ ✘

TC4.4.3 AV Simulation ✔ ✘

TC4.5.1 Semantic Knowledge Graph ✘ ✔

TC4.5.2 Semantic Knowledge Graph Service ✔ ✔ ✔ ✘

TC5.1.1 HLS based SW to HW Transformation ✘

TC5.3.1 Extended Reality lifelong learning
tools/Interfaces for integrated CPSoS

 ✔ ✘

38

For the representation of interfaces, we created UML diagrams using the open-source PlantUML2 language and the online PlantText UML editor3,
that allow the generation of diagrams from simple textual descriptions. Figures 2 to 6 offer a closer look to the designed interfaces of specific
component clusters, while Figure 7 presents an overview of all system interfaces. The respective PlantUML code is provided in Annex A.

2 https://plantuml.com/

3 https://planttext.com/

39

Figure 2 - Interfaces of components related to OpenCL

40

Figure 3 - Interfaces of CARLA-integrated components

Figure 4 - Interfaces of Security Runtime Monitoring

41

Figure 5 - Interfaces of Semantic components

Figure 6 - Interfaces of simulators

42

Figure 7 - Overview of system interfaces (link for larger image)

https://t.ly/au84

43

4 Requirement View

4.1 System Requirement Monitoring Methodologies

Building upon the efforts presented in D1.3, the system requirement reference document has been
updated and enriched with new fields to allow the efficient documentation and monitoring of the
requirements’ status. To this end, a new requirement specification template has been circulated to
technical partners, for them to populate with information regarding the fulfilment status, the target
fulfilment phase and relevant deliverable, and the requirement priority.

For the latter, we have adopted the MoSCoW prioritization methodology [1] that classifies requirements
as must-have (critical requirements), should-have (important but not absolutely necessary), could-have
(desirable but not necessary) and won’t-have (least-critical or not appropriate).

Table 3 presents the fields of the new specification template, the format of expected responses and the
lists of predefined values (where applicable).

Table 3 - Explanation of fields in the requirement specification template

Field Explanation Format Values

Req. ID The ID of the requirement A unique ID to be typed
manually. IDs should encode
the TC they refer to. Suffix R
indicates a functional
requirement, while suffix
NFR indicates a non-
functional requirement.

Description An unambiguous requirement
description

Free text

Type Identifies the type of the
requirement, i.e., whether it is a
functional requirement, security
requirement or non-functional
requirement (usability, reliability,
efficiency, maintainability),
integration requirement, etc.

Selection list • Functionality

• Usability

• Reliability

• Efficiency

• Maintainability

• Integration

• Security

• Functionality & Security

• Functionality &
Integration

Source Defines how the requirement was
identified

End user: the system requirement
has been elicited to satisfy a user
requirement.

DoA: The system requirement has
been extracted from the Description
of Action.

Selection list • End user

• DoA

• End User & DoA

WP The WP responsible for the effort to
satisfy the requirement.

Selection list WP1-WP8

44

Target Component Indicates the Technical Component
that is related to this system
requirement.

Selection list • TC2.1.1

• TC2.2.1

• Etc.

Target Phase Indicates the expected system
version where this requirement will
have been addressed. System
phases are associated to the
CPSoSaware milestones, as
described in the DoA, and the
corresponding project months.

Selection list • MS1 - Preliminary use
cases and evaluation
metrics - M12

• MS2 - CPSoSaware
specifications and
architecture - M24

• Etc.

Priority Indicates how important the
requirement is for the CPSoSaware
system and its objectives. The
priority level is defined using the
MoSCoW technique.

Selection list • M(ust)

• S(hould)

• C(ould)

• W(on’t)

Author The partner suggesting the
requirement.

Selection list • ISI

• I2CAT

• IBM

• Etc.

How addressed Short description of how the
requirement has been addressed.
This is used for recording and
monitoring progress of each
requirement.

Free text

Reported in The deliverable(s) where the effort
to address this requirement has
been reported.

Free text

Status The fulfilment status of the
requirement.

Selection list • Not achieved yet

• Partially achieved

• Achieved

• Rejected

• Obsolete

• Redundant

45

4.2 Current Status of System Requirements

Based on the information collected with the use of the latest requirement specification templates (see subsection 4.1), the following table lists the system
requirements and their current status (as of M24 of the project).

Table 4 - Status of system requirements

Req. ID Description Type Source WP Target comp. Target phase Priority Author How addressed Reported in Status

TC2.1.1.R1
Use an events list
to register events

Functionality
End User

& DoA
WP2

TC2.1.1 Data
Collection
Module

MS4 - First version of
User Environment
and communication
Models - M12

S(hould) 8BELLS
The data collection was
performed using google
forms

D2.1 Redundant

TC2.1.1.R2

Be able to
demonstrate in
graphical way the
HF models (that
can be initially
designed in UML
format)

Functionality
End User

& DoA
WP2

TC2.1.1 Data
Collection
Module

MS4 - First version of
User Environment
and communication
Models - M12

S(hould) 8BELLS
The data collection was
performed using google
forms

D2.1 Redundant

TC2.1.1.R3

Use statistics to
track important
changes in
variables

Functionality
End User

& DoA
WP2

TC2.1.1 Data
Collection
Module

MS4 - First version of
User Environment
and communication
Models - M12

S(hould) 8BELLS
The data collection was
performed using google
forms

D2.1 Redundant

TC2.1.1.R4
Should provide
library of human
metrics

Functionality
End User

& DoA
WP2

TC2.1.1 Data
Collection
Module

MS4 - First version of
User Environment
and communication
Models - M12

S(hould) 8BELLS
The data collection was
performed using google
forms

D2.1 Redundant

TC2.1.1.R5

Should be able to
display in a
graphical way
these metrics

Functionality
End User

& DoA
WP2

TC2.1.1 Data
Collection
Module

MS4 - First version of
User Environment
and communication
Models - M12

S(hould) 8BELLS
The data collection was
performed using google
forms

D2.1 Redundant

TC2.1.1.R6

The operator
should be able to
query the Data
Collection data
metrics

Functionality
End User

& DoA
WP2

TC2.1.1 Data
Collection
Module

MS4 - First version of
User Environment
and communication
Models - M12

S(hould) 8BELLS
The data collection was
performed using google
forms

D2.1 Redundant

46

TC2.1.1.R7

The operator will
be able to input
data from a
CSV/Spreadsheet
into the DCM

Functionality
End User

& DoA
WP2

TC2.1.1 Data
Collection
Module

MS4 - First version of
User Environment
and communication
Models - M12

C(ould) 8BELLS
The data collection was
performed using google
forms

D2.1 Redundant

TC2.1.1.R8

The system shall
ensure the
confidentiality and
integrity of the
data being
transmitted in the
system

Security
End User

& DoA
WP2

TC2.1.1 Data
Collection
Module

MS4 - First version of
User Environment
and communication
Models - M12

M(ust) 8BELLS
The data collection was
performed using google
forms

D2.1 Redundant

TC2.1.1.R9

The system shall
ensure the
availability of its
services to the
relevant
stakeholders

Reliability
End User

& DoA
WP2

TC2.1.1 Data
Collection
Module

MS4 - First version of
User Environment
and communication
Models - M12

S(hould) 8BELLS
The data collection was
performed using google
forms

D2.1 Redundant

TC2.1.1.NFR1

The DCM should
scale automatically
to meet the
demand of new
DCM metric data

Efficiency
End User

& DoA
WP2

TC2.1.1 Data
Collection
Module

MS4 - First version of
User Environment
and communication
Models - M12

S(hould) 8BELLS
The data collection was
performed using google
forms

D2.1 Redundant

TC2.1.1.NFR2

The DCM should
provide a secure
housing of The
metrics data

Security
End User

& DoA
WP2

TC2.1.1 Data
Collection
Module

MS4 - First version of
User Environment
and communication
Models - M12

M(ust) 8BELLS
The data collection was
performed using google
forms

D2.1 Redundant

TC2.2.1.R1

The user should be
able to feed the
simulator with
specific network
scenario
configuration

Functionality
End User

& DoA
WP2

TC2.2.1 Intra-
Communication
Sim Tool

MS7 - Intermediate
CPHs Architecture
Design and
Implementation -
M24

M(ust) UOP

Scenarios and network
configuration are fed to
simulator using
message-driven
framework.

D4.2 Achieved

TC2.2.1.R2

The tool will be
able to record the
simulation results
in log files

Functionality
End User

& DoA
WP2

TC2.2.1 Intra-
Communication
Sim Tool

MS7 - Intermediate
CPHs Architecture
Design and
Implementation -
M24

M(ust) UOP
Simulation results are
extracted in trace files

D4.2 Achieved

47

TC2.2.1.R3

The tool will be
able to process the
log files and extract
the evaluation
results of the
simulation

Functionality
End User

& DoA
WP2

TC2.2.1 Intra-
Communication
Sim Tool

MS7 - Intermediate
CPHs Architecture
Design and
Implementation -
M24

M(ust) UOP

Simulation trace files
are processed and
presented in web-
based dashboard
(based on Grafana)

D4.2 Achieved

TC2.2.1.R4

The simulation
outcomes will be
able to be indexed
in database and
visualized (e.g.,
Prometheus/Grafa
na,
ElasticSearch/Kiban
a)

Functionality
End User

& DoA
WP2

TC2.2.1 Intra-
Communication
Sim Tool

MS7 - Intermediate
CPHs Architecture
Design and
Implementation -
M24

M(ust) UOP

Simulation trace files
are processed and
presented in web-
based dashboard
(based on Grafana)

D4.2 Achieved

TC2.2.1.R5

The evaluation
results will be
formulated and fed
back to the input of
the tool to perform
optimizations
through iterations

Functionality
End User

& DoA
WP2

TC2.2.1 Intra-
Communication
Sim Tool

MS7 - Intermediate
CPHs Architecture
Design and
Implementation -
M24

M(ust) UOP

Software running on
raw simulation data are
aggregating results and
feedback the simulator.

D4.2
Partially
achieved

TC2.2.1.NFR1

The tool should be
able to scale
according to the
load

Functionality
End User

& DoA
WP2

TC2.2.1 Intra-
Communication
Sim Tool

MS7 - Intermediate
CPHs Architecture
Design and
Implementation -
M24

S(hould) UOP

Simulation jobs are
scheduled and served
asynchronously based
on the available
resources

D4.2 Achieved

TC2.2.1.NFR2

Adoption of
microservices
paradigm (e.g.
containerization)

Functionality
End User

& DoA
WP2

TC2.2.1 Intra-
Communication
Sim Tool

MS7 - Intermediate
CPHs Architecture
Design and
Implementation -
M24

C(ould) UOP

The NS3 Simulation as a
Service is fully
containerized deployed
in a Kubernetes cluster

D4.2 Achieved

TC2.2.1.NFR3
Authentication/aut
horization schemes
will be supported

Functionality &
Integration

End User
& DoA

WP2
TC2.2.1 Intra-
Communication
Sim Tool

MS7 - Intermediate
CPHs Architecture
Design and
Implementation -
M24

C(ould) UOP
OAUTH2 schemes will
be employed

D4.2 Achieved

48

TC2.2.1.NFR4

The tool will
expose well
defined APIs to
allow 3rd party
services to
integrate

Usability
End User

& DoA
WP2

TC2.2.1 Intra-
Communication
Sim Tool

MS7 - Intermediate
CPHs Architecture
Design and
Implementation -
M24

M(ust) UOP

RESTFul APIs will be
designed and exposed
for integration with 3rd
party components

D4.2
Partially
achieved

TC2.2.1.NFR5
The tool will be
available online

Usability
End User

& DoA
WP2

TC2.2.1 Intra-
Communication
Sim Tool

MS7 - Intermediate
CPHs Architecture
Design and
Implementation -
M24

C(ould) UOP

The tool has beed
designed to be
completely web based
and accessible
following the
microservices
architectural paradigm

D4.2 Achieved

TC2.2.2.R1

Provide access to
all OpenCL-
supported devices
in a network
distributed
platform from a
single host
application.

Functionality
End User

& DoA
WP2

TC2.2.2 pocl-
remote

MS8 - Final CPHs
Architecture Design
and Implementation -
M36

M(ust) TAU

Work mostly imported
from another project's
results, adapted to the
CPSoSAware needs.

D3.2 (due
M28)

Partially
achieved

TC2.2.2.R2

Support peer-to-
per
synchronization of
devices without
host-application
round trips.

Efficiency
End User

& DoA
WP2

TC2.2.2 pocl-
remote

MS8 - Final CPHs
Architecture Design
and Implementation -
M36

S(hould) TAU In progress.
D3.2 (due

M28)
Partially
achieved

TC2.2.2.NFR1

At most 15%
overhead in
latency on top of
the unavoidable
network latencies.

Efficiency
End User

& DoA
WP2

TC2.2.2 pocl-
remote

MS8 - Final CPHs
Architecture Design
and Implementation -
M36

S(hould) TAU In progress.
D3.2 (due

M28)
Partially
achieved

TC2.2.2.NFR2

Can utilize 80% of
the theoretical
bandwidth for
buffer transfers.

Efficiency
End User

& DoA
WP2

TC2.2.2 pocl-
remote

MS8 - Final CPHs
Architecture Design
and Implementation -
M36

S(hould) TAU In progress.
D3.2 (due

M28)
Partially
achieved

49

TC2.2.3.R1
Secure
identification of
CPSs

 WP2
TC2.2.3 Slice
Manager

 I2CAT Obsolete

TC2.2.3.R2

Monitors and
assures the
behavior and
performance of the
various slices
through collecting
network function
and infrastructure
data

 WP2
TC2.2.3 Slice
Manager

 I2CAT Obsolete

TC2.2.3.R3
Slice automation
and orchestration

 WP2
TC2.2.3 Slice
Manager

 I2CAT Obsolete

TC2.2.3.R4

Need to support
slice modelling by
changing various
network functions,
connection and
links to create
specific network
services

 WP2
TC2.2.3 Slice
Manager

 I2CAT Obsolete

TC2.2.3.NFR1
Delay of service
instantiate

 WP2
TC2.2.3 Slice
Manager

 I2CAT Obsolete

TC2.2.3.NFR2
Service recovery
failure and service
continuity

 WP2
TC2.2.3 Slice
Manager

 I2CAT Obsolete

TC2.2.4.R1

Potentially able to
levarage the
features and
functionality of
OSM MANO

 WP2
TC2.2.4
LightEdge

 I2CAT Obsolete

TC2.2.4.R2

Compling with the
Cloud native
solutions and
allowing the
contenarized edge
application

 WP2
TC2.2.4
LightEdge

 I2CAT Obsolete

50

TC2.2.4.R3

Capable of
supporting the
Local breakout for
enterprise
application

 WP2
TC2.2.4
LightEdge

 I2CAT Obsolete

TC2.2.4.NFR1
Handling the user
mobility

 WP2
TC2.2.4
LightEdge

 I2CAT Obsolete

TC2.2.4.NFR2

Scalability between
the LightEdge
enabled MEC
servers

 WP2
TC2.2.4
LightEdge

 I2CAT Obsolete

TC2.2.4.NFR3
Service failure
recovery

 WP2
TC2.2.4
LightEdge

 I2CAT Obsolete

TC2.3.1.R1

Accelerate DNN
inference in
comparison to
software running in
ARM.

Efficiency
End User

& DoA
WP2

TC2.3.1 ML
Hardware
Accelerator IP
Cores

MS7 - Intermediate
CPHs Architecture
Design and
Implementation -
M24

M(ust) UOP
Implementation on
FPGA equipped with
ARM processing cores

D4.1
Partially
achieved

TC2.3.1.NFR1
At least 20% faster
8b convolutions
achieved.

Efficiency
End User

& DoA
WP2

TC2.3.1 ML
Hardware
Accelerator IP
Cores

MS7 - Intermediate
CPHs Architecture
Design and
Implementation -
M24

M(ust) UOP Implemented on FPGA D4.3
Partially
achieved

TC2.3.2.R1

Confidentiality: The
components
should provide
cryptography
services for
popular Public and
Private encryption
algorithms).
Support for Public
Key Infrastructure
should be possible)

Security
End User

& DoA
WP2

TC2.3.2 Security
Accelerators for
CPS security
agents/sensors

MS7 - Intermediate
CPHs Architecture
Design and
Implementation -
M24

M(ust) USI

Components have been
created to achieve this
goal in hardware
and/or software

D2.3 and D3.5
Partially
achieved

TC2.3.2.R2

Data Integrity: The
components
should provide
cryptography

Security
End User

& DoA
WP2

TC2.3.2 Security
Accelerators for
CPS security
agents/sensors

MS7 - Intermediate
CPHs Architecture
Design and

M(ust) USI

Components have been
created to achieve this
goal in hardware
and/or software

D2.3 and D3.5
Partially
achieved

51

services for
popular message
Integrity
Mechanisms
include MAC
functions, Digital
Signature and
Authenticated
Encryption

Implementation -
M24

TC2.3.2.R3

Authentication:
The components
should be able to
provide
authentication
services including
message
authentication,
machine to
machine (M2M)
authentication.

Security
End User

& DoA
WP2

TC2.3.2 Security
Accelerators for
CPS security
agents/sensors

MS7 - Intermediate
CPHs Architecture
Design and
Implementation -
M24

M(ust) USI

Components have been
created to achieve this
goal in hardware
and/or software

D2.3 and D3.5
Partially
achieved

TC2.3.2.NFR1

Resistance against
security attacks
(side channel
attacks)

Security DoA WP2

TC2.3.2 Security
Accelerators for
CPS security
agents/sensors

MS7 - Intermediate
CPHs Architecture
Design and
Implementation -
M24

S(hould) USI

The componenets have
been strengthen tp
provide resistnace
against Side channel
attacks

D2.3 and D3.5
Partially
achieved

TC2.3.2.NFR2
Strong
Cryptographic
Strength

Security
End User

& DoA
WP2

TC2.3.2 Security
Accelerators for
CPS security
agents/sensors

MS7 - Intermediate
CPHs Architecture
Design and
Implementation -
M24

S(hould) USI

The components offer
quantum safe level of
security which is the
considerably strong
security

D2.3 and D3.5
Partially
achieved

TC2.3.2.NFR3
Reliability-Fault
tolerence

Reliability DoA WP2

TC2.3.2 Security
Accelerators for
CPS security
agents/sensors

MS7 - Intermediate
CPHs Architecture
Design and
Implementation -
M24

S(hould) USI

Resistance against fault
injection attacks have
been introduced in
some of the developed
components

D2.3 and D3.5
Partially
achieved

TC2.3.2.NFR4
Efficiency
(response time)

Efficiency
End User

& DoA
WP2

TC2.3.2 Security
Accelerators for

MS7 - Intermediate
CPHs Architecture
Design and

S(hould) USI
The component
architecture using HSL
tools or directly

D2.3 and D3.5
Partially
achieved

52

CPS security
agents/sensors

Implementation -
M24

hardware description
language optimization
has been made
considerably efficient in
terms of speed

TC2.3.2.NFR5

Efficiency
(constrained
memory and chip
covered area
resources)

Efficiency
End User

& DoA
WP2

TC2.3.2 Security
Accelerators for
CPS security
agents/sensors

MS7 - Intermediate
CPHs Architecture
Design and
Implementation -
M24

S(hould) USI

Some of the developed
components are
designed as lightweight
architectures (e.g.
lightweight
cryptography schemes)
that consume minimal
number of utilized
resources

D2.3 and D3.5
Partially
achieved

TC2.3.2.NFR6 Flexibility Usability DoA WP2

TC2.3.2 Security
Accelerators for
CPS security
agents/sensors

MS7 - Intermediate
CPHs Architecture
Design and
Implementation -
M24

S(hould) USI

The developed
components have been
parameterized so as to
be adjustable to
various security levels

D2.3 and D3.5
Partially
achieved

TC2.3.2.NFR7 Interoperability Usability DoA WP2

TC2.3.2 Security
Accelerators for
CPS security
agents/sensors

MS7 - Intermediate
CPHs Architecture
Design and
Implementation -
M24

C(ould) USI

The developed
components are
adaptable to any
CPSoSaware
cybersecurity scenario.

D2.3 and D3.5
Partially
achieved

TC2.3.3.R1 Profiling Efficiency
End User

& DoA
WP2

TC2.3.3 Model
transformation
to openCL

MS7 - Intermediate
CPHs Architecture
Design and
Implementation -
M24

M(ust) UOP

Driver State Monitoring
(DSM) application
based on DEST library.
Profiled to recognize
the candidate functions
for HW acceleration

D2.2
Partially
achieved

TC2.3.3.R2
HLS based SW to
HW
Transformation

Efficiency
End User

& DoA
WP2

TC2.3.3 Model
transformation
to openCL

MS7 - Intermediate
CPHs Architecture
Design and
Implementation -
M24

M(ust) UOP
HW synthesis
performed in Xilinx Vitis

D2.2
Partially
achieved

TC2.3.3.NFR1
Development of
HW-SW Library

Efficiency
End User

& DoA
WP2

TC2.3.3 Model
transformation
to openCL

MS7 - Intermediate
CPHs Architecture
Design and

M(ust) UOP
FPGA implementations
of DSM components as
well as other HSL

D3.6
Partially
achieved

53

with reliable
Components.

Implementation -
M24

components used to
populate this library

TC2.4.1.R1

Accelerate DNN
inference in
comparison to
software running in
ARM.

Efficiency
End User

& DoA
WP2

TC2.4.1 Xilinx
XRT KPI
monitoring

MS7 - Intermediate
CPHs Architecture
Design and
Implementation -
M24

M(ust) UOP
A CNN for handwritten
character recognition
employed as a use case

D3.2
Partially
achieved

TC2.4.1.R2
HLS based SW to
HW
Transformation

Functionality
End User

& DoA
WP2

TC2.4.1 Xilinx
XRT KPI
monitoring

MS7 - Intermediate
CPHs Architecture
Design and
Implementation -
M24

M(ust) UOP
HLS implementation of
CNN for handwritten
character recognition

D3.2
Partially
achieved

TC2.4.1.R3

Commissioning:
The component
should be able to
collect hardware
bitstreams IP Cores
and download
them on the FPGA
fabric of a
Multiprocessor
System on Chip
FPGA board.

Functionality
End User

& DoA
WP2

TC2.4.1 Xilinx
XRT KPI
monitoring

MS7 - Intermediate
CPHs Architecture
Design and
Implementation -
M24

M(ust) UOP

Vitis XRT is used to
support HW
configuration bitstream
download to FPGA

D2.3
Partially
achieved

TC2.4.1.R4

Reconfigurability:
The components
should be able to
reconfigure the
commissioned
hardware IP Cores
on the FPGA fabric
of a TC4.6.1.R3
Multiprocessor
System on Chip
FPGA board and
replace existing
hardware IP Cores.

Functionality
End User

& DoA
WP2

TC2.4.1 Xilinx
XRT KPI
monitoring

MS7 - Intermediate
CPHs Architecture
Design and
Implementation -
M24

M(ust) UOP

Multiple models for
face alignment in the
DSM module have been
trained and can be
employed in dynamic
reconfiguration of HW
kernels according to
environmental
conditions or other
inputs

D2.3
Partially
achieved

54

TC2.4.1.R5

Removal: The
component should
be able to remove
existing hardware
IP Cores in the
FPGA fabric of a
Multiprocessor
System on Chip
(MPSoS) FPGA
board.

Functionality
End User

& DoA
WP2

TC2.4.1 Xilinx
XRT KPI
monitoring

MS7 - Intermediate
CPHs Architecture
Design and
Implementation -
M24

M(ust) UOP

Dynamic
reconfiguration of HW
kernels implies HW
kernel removal

D2.3
Partially
achieved

TC2.4.1.R6

Accessibility: The
component should
be able to
communicate with
the model-based
design mechanism
of the CPSoSaware
layer in order to
deploy hardware IP
Cores in the MPSoC
board. (TC4.6.1.R5)

Functionality
End User

& DoA
WP2

TC2.4.1 Xilinx
XRT KPI
monitoring

MS7 - Intermediate
CPHs Architecture
Design and
Implementation -
M24

M(ust) UOP

Implemented as part of
the dynamic
reconfiguration of HW
kernels

D2.3
Partially
achieved

TC2.4.1.NFR1

Development of
HW-SW Library
with reliable
Components

Efficiency
End User

& DoA
WP2

TC2.4.1 Xilinx
XRT KPI
monitoring

MS7 - Intermediate
CPHs Architecture
Design and
Implementation -
M24

M(ust) UOP

FPGA implementations
of DSM components as
well as other HSL
components used to
populate this library

D3.6
Partially
achieved

TC2.4.1.NFR2

The component
should be able to
handle efficiently
the configuration
updates and
resolve any
possible
dependencies

Efficiency
End User

& DoA
WP2

TC2.4.1 Xilinx
XRT KPI
monitoring

MS6 - Preliminary
CPHs Architecture
Design and
Implementation -
M12

C(ould) UOP

Some indications about
dependencies have
been highlighted during
profiling

D3.6
Partially
achieved

TC2.4.1.NFR3

The component
should be able to
provide integrity
validation method
in both ends (e.g.

Reliability
End User

& DoA
WP2

TC2.4.1 Xilinx
XRT KPI
monitoring

MS6 - Preliminary
CPHs Architecture
Design and
Implementation -
M12

C(ould) UOP

In the DSM module,
validation of the face
boundaries has been
applied

D3.6
Partially
achieved

55

hashes of the
transferred
payloads)

TC2.4.1.NFR4

The component
should be aware of
the commissioning
process’ status and
handle failures
(e.g. rollback to
previous versions)

Reliability
End User

& DoA
WP2

TC2.4.1 Xilinx
XRT KPI
monitoring

MS6 - Preliminary
CPHs Architecture
Design and
Implementation -
M12

C(ould) UOP

Methods to roll back to
a valid state will be
investigated where
applicable

D3.6
Not

achieved
yet

TC2.5.1.R1

User-driven
orchestration
control events to
initiate
orchestration.

Functionality &
integration

End User
& DoA

WP2

TC2.5.1
Modelling
Orchestration
Tool

MS5 - Final version of
User Environment
communication
Models - M24

M(ust) 8BELLS

Developed an
orchestration
environment with an
embedded UI

D2.2 Achieved

TC2.5.1.R2

Autonomic model-
driven
orchestration
control events by
models

Functionality &
integration

DoA WP2

TC2.5.1
Modelling
Orchestration
Tool

MS5 - Final version of
User Environment
communication
Models - M24

C(ould) 8BELLS

Simulation model
development is not
related to the
orchestration process

D2.2
Not

achieved
yet

TC2.5.1.R3
Integrate existing
CPS modelling-
simulation tools

Integration DoA WP2

TC2.5.1
Modelling
Orchestration
Tool

MS5 - Final version of
User Environment
communication
Models - M24

S(hould) 8BELLS

Carla, NS3, SUMO,
RoSi, Robotec V2X, and
Manufacturing
Simulators are
integrated to the
orchestrations tool

D2.2 Achieved

TC2.5.1.NFR1

Minimize
centralized control
of the
orchestration

Functionality
End User

& DoA
WP2

TC2.5.1
Modelling
Orchestration
Tool

MS5 - Final version of
User Environment
communication
Models - M24

S(hould) 8BELLS

The orchestrator
applications can be use
by whoever has the
credentials to control
the simulations

D2.2 Achieved

TC2.5.1.NFR2
Reliable and secure
autonomic
operations

Functionality &
security

DoA WP2

TC2.5.1
Modelling
Orchestration
Tool

MS5 - Final version of
User Environment
communication
Models - M24

S(hould) 8BELLS
Every tool is running on
an individual safe and
secure environment

D2.2 Achieved

TC3.1.1.R1
Trajectory of
vehicle generated
by CARLA.

Integration
End User

& DoA
WP3

TC3.1.1 Visual
Localization

MS2 - CPSoSaware
specifications and
architecture - M24

S(hould) ISI
Low-cost Methods for
Visual SLAM that can

D3.1
Partially
achieved

56

run efficiently on edge
devices

TC3.1.1.R2
Database of geo-
tagged images
available.

Functionality &
integration

End User
& DoA

WP3
TC3.1.1 Visual
Localization

MS2 - CPSoSaware
specifications and
architecture - M24

S(hould) ISI

Synthetic images
combined with ground
truth position extracted
by the Carla simulation
environment

D3.1
Partially
achieved

TC3.1.1.NFR1

Minimize the
computational
time of visual
search in the
database

Efficiency
End User

& DoA
WP3

TC3.1.1 Visual
Localization

MS2 - CPSoSaware
specifications and
architecture - M24

S(hould) ISI
A bag-of-words
approach for fast image
search and retrieval

D3.1
Partially
achieved

TC3.1.2.R1
Availability of
RGBD and point
cloud data

Functionality &
integration

End User
& DoA

WP3

TC3.1.2 Deep
Multimodal
Scene
Understanding

MS2 - CPSoSaware
specifications and
architecture - M24

S(hould) ISI

Synthetic RGBD and
lidar data extracted by
the Carla simulation
environment

D3.1 Achieved

TC3.1.2.R2

Camera mapping
strategy and LIDAR
processing
approach for
effective data
fusion

Functionality &
integration

End User
& DoA

WP3

TC3.1.2 Deep
Multimodal
Scene
Understanding

MS2 - CPSoSaware
specifications and
architecture - M24

S(hould) ISI

Low cost multi modal
fusion approach for
integrating visual and
lidar sensor data

D3.1
Not

achieved
yet

TC3.1.2.R3
Post-processing
semantic analysis
functionality

Functionality
End User

& DoA
WP3

TC3.1.2 Deep
Multimodal
Scene
Understanding

MS2 - CPSoSaware
specifications and
architecture - M24

S(hould) ISI

Effective image and
point cloud processing
for semantic
segmentation

D3.1
Not

achieved
yet

TC3.1.2.NFR1
Real-time
execution

Efficiency
End User

& DoA
WP3

TC3.1.2 Deep
Multimodal
Scene
Understanding

MS2 - CPSoSaware
specifications and
architecture - M24

M(ust) ISI

Algorithms with
bounded execution
time deployed on
accelerated hardware

D3.1
Partially
achieved

TC3.1.2.NFR2

Efficient semantic
representation to
reduce required
training data

Efficiency
End User

& DoA
WP3

TC3.1.2 Deep
Multimodal
Scene
Understanding

MS2 - CPSoSaware
specifications and
architecture - M24

S(hould) ISI

Effective image and
point cloud processing
for semantic
segmentation

D3.1
Partially
achieved

TC3.1.3.R1
Pre-trained model
of faces for the
real-time face

Maintainability DoA WP3
TC3.1.3 User
Behaviour
Monitoring

MS5 - Final version of
User Environment

S(hould) UPAT
CNN algorithm that
extracts facial
landmarks

D3.1 Achieved

57

recognition and
face tracking via
markers

communication
Models - M24

TC3.1.3.R2
Continuously
recording of the
driver's face

Functionality
End User

& DoA
WP3

TC3.1.3 User
Behaviour
Monitoring

MS5 - Final version of
User Environment
communication
Models - M24

M(ust) UPAT
Real time
implementation using
camera

D3.1
Partially
achieved

TC3.1.3.R3

Optimization of
algorithms for
running in real-
time

Efficiency DoA WP3
TC3.1.3 User
Behaviour
Monitoring

MS7 - Intermediate
CPHs Architecture
Design and
Implementation -
M24

C(ould) UPAT
Parameterization of the
algorithm to run real
time

D3.1
Not

achieved
yet

TC3.1.3.R4

Decision making
based on the
drowsiness level,
indicating the
appropriate
warning signs.

Usability
End User

& DoA
WP3

TC3.1.3 User
Behaviour
Monitoring

MS7 - Intermediate
CPHs Architecture
Design and
Implementation -
M24

M(ust) UPAT
Metrics and SoA rules
that indicate the
drowsiness

D3.1 Achieved

TC3.1.3.R5

Continuous
monitoring and
recording of
driver's pulse rate
from a wearable
device.

Functionality
End User

& DoA
WP3

TC3.1.3 User
Behaviour
Monitoring

MS5 - Final version of
User Environment
communication
Models - M24

C(ould) UPAT

Use of wearable
devices to monitor
biometrics of the
drivers

D3.1
Not

achieved
yet

TC3.1.3.NFR1
Computational
efficiency

Efficiency
End User

& DoA
WP3

TC3.1.3 User
Behaviour
Monitoring

MS7 - Intermediate
CPHs Architecture
Design and
Implementation -
M24

S(hould) UPAT

Parameterization of the
algorithm to be
computationally
efficient

D3.1
Not

achieved
yet

TC3.1.3.NFR2
Security of the
driver or human
operator

Security
End User

& DoA
WP3

TC3.1.3 User
Behaviour
Monitoring

MS7 - Intermediate
CPHs Architecture
Design and
Implementation -
M24

M(ust) UPAT
Continuously
monitoring the users;
status and behavior

D3.1
Partially
achieved

TC3.1.3.NFR3
Maximization of
the situational
awareness

Functionality &
security

End User
& DoA

WP3
TC3.1.3 User
Behaviour
Monitoring

MS7 - Intermediate
CPHs Architecture
Design and

M(ust) UPAT

Visualization of
potholes and obstacles
before the drivers can
see them

D3.1
Partially
achieved

58

Implementation -
M24

TC3.1.3.NFR4
Robustness under
different light
conditions

Reliability End user WP3
TC3.1.3 User
Behaviour
Monitoring

MS7 - Intermediate
CPHs Architecture
Design and
Implementation -
M24

S(hould) UPAT

Use of point clouds that
their geometry is not
affected by light
conditions

D3.1
Not

achieved
yet

TC3.1.4.R1

Pre-trained DCNN
available: Original
DCNN model, pre-
trained for the
target application,
available in ONNX,
or MATLAB, or TF
format.

Usability
End User

& DoA
WP3

TC3.1.4 AI
Acceleration

MS2 - CPSoSaware
specifications and
architecture - M24

S(hould) ISI

Employ software tools
which enable the
transformation of TF
format to MATLAB and
ONNX

D3.1
Partially
achieved

TC3.1.4.R2

Data availability:
Training/validation
dataset, for the
target application,
available for
retraining/finetuni
ng purposes.

Functionality
End User

& DoA
WP3

TC3.1.4 AI
Acceleration

MS2 - CPSoSaware
specifications and
architecture - M24

S(hould) ISI

Extract training dataset
(images, point cloud,
positions) from CARLA
simulation
environment

D3.1 Achieved

TC3.1.4.R3

Accelerated DCNN
runtime
functionality:
Availability of
parameter-sharing
enabled
convolutional layer
implementation.

Functionality DoA WP3
TC3.1.4 AI
Acceleration

MS7 - Intermediate
CPHs Architecture
Design and
Implementation -
M24

S(hould) ISI

Well known model
compression and
acceleration methods
will be used

D3.1
Partially
achieved

TC3.1.4.NFR1
Accelerated model
accuracy within
user specifications.

Functionality DoA WP3
TC3.1.4 AI
Acceleration

MS7 - Intermediate
CPHs Architecture
Design and
Implementation -
M24

S(hould) ISI

Well known model
compression and
acceleration methods
will be used

D3.1
Partially
achieved

TC3.1.4.NFR2
Minimize
accelerated DCNN

Functionality &
integration

DoA WP3
TC3.1.4 AI
Acceleration

MS7 - Intermediate
CPHs Architecture
Design and

S(hould) ISI
Well known model
compression and

D3.1
Partially
achieved

59

model storage
space.

Implementation -
M24

acceleration methods
will be used

TC3.1.4.NFR3

Minimize
accelerated DCNN
model inference
time execution.

Functionality &
integration

DoA WP3
TC3.1.4 AI
Acceleration

MS7 - Intermediate
CPHs Architecture
Design and
Implementation -
M24

S(hould) ISI

Well known model
compression and
acceleration methods
will be used

D3.1
Partially
achieved

TC3.2.1.R1

Must be able to
support at least
OpenCL 1.2 based
command queues
on the AlmaIF

Integration DoA WP3
TC3.2.1 pocl-
accel

MS7 - Intermediate
CPHs Architecture
Design and
Implementation -
M24

M(ust) TAU

Implemented and
reported. Publication
presented in NorCAS
2021.

D2.3 Achieved

TC3.2.1.NFR1
Driver overhead
less than 1%

Efficiency DoA WP3
TC3.2.1 pocl-
accel

MS7 - Intermediate
CPHs Architecture
Design and
Implementation -
M24

S(hould) TAU
Implemented and
reported.

D2.3 Achieved

TC3.3.1.R1

Trajectories of
vehicles: CARLA
simulator will
generate the
trajectories of
vehicles moving in
a city.

Functionality DoA WP3
TC3.3.1
Multimodal
Localization API

MS10 - Final version
of the Simulation
Software - M24

S(hould) ISI

Vehicle trajectories
generated by CARLA
simulator are extracted
to csv files

D3.3 Achieved

TC3.3.1.R2

Measurement
availability: It is
assumed that
absolute position
and range
measurements
from GPS and
LIDAR sensor will
always be
available.

Functionality DoA WP3
TC3.3.1
Multimodal
Localization API

MS2 - CPSoSaware
specifications and
architecture - M24

S(hould) ISI

Measurements will be
produced from the
ground truth positions
degraded by Gaussian
noise

D3.3 Achieved

TC3.3.1.R3

Cooperation:
Multi-modal fusion
will be performed
in a collaborating

Functionality DoA WP3
TC3.3.1
Multimodal
Localization API

MS2 - CPSoSaware
specifications and
architecture - M24

S(hould) ISI

Cooperation will be
established within a
fixed communication
range

D3.3 Achieved

60

manner, by
representing the
VANET as a graph.

TC3.3.1.NFR1
Measurements
degraded by
Gaussian noise.

Functionality DoA WP3
TC3.3.1
Multimodal
Localization API

MS2 - CPSoSaware
specifications and
architecture - M24

S(hould) ISI

Measurements will be
produced from the
ground truth positions
degraded by Gaussian
noise

D3.3 Achieved

TC3.3.1.NFR2

Exchange of
measurements and
estimation of
locations before
the new GPS
measurement.

Functionality DoA WP3
TC3.3.1
Multimodal
Localization API

MS2 - CPSoSaware
specifications and
architecture - M24

M(ust) ISI
GPS updating time
should be between 0.2
and 0.4 sec

D3.3 Achieved

TC3.3.2.R1

Location Logging
Mechanism: The
component should
be able to collect
logs of the node's
position.

Functionality End user WP3
TC3.3.2
PathPlanning
API

MS2 - CPSoSaware
specifications and
architecture - M24

S(hould) ISI
Position log's update
time between 0.2 and
0.4 sec

D3.3
Not

achieved
yet

TC3.3.2.R2

Control Error
Logging
Mechanism: The
component should
be able to collect
logs related to the
path planning
control error.

Functionality End user WP3
TC3.3.2
PathPlanning
API

MS10 - Final version
of the Simulation
Software - M24

C(ould) ISI
Control log's update
time between 0.2 and
0.4 sec

D3.3
Not

achieved
yet

TC3.3.2.R3

Execution Time:
The component
should be able to
collect the
measured time
between update of
sensor inputs till
response to
updated inputs for
each node.

Functionality End user WP3
TC3.3.2
PathPlanning
API

MS10 - Final version
of the Simulation
Software - M24

S(hould) ISI

Address within the
context of simulating
visual sensors inside
CARLA

D3.3
Not

achieved
yet

61

TC3.3.2.R4

Connectivity graph:
The component
should be able to
store the nodes
that are actively
collaborate to
optimize the path
planning control.

Functionality End user WP3
TC3.3.2
PathPlanning
API

MS10 - Final version
of the Simulation
Software - M24

S(hould) ISI

Cooperation will be
established within a
fixed communication
range

D3.3
Not

achieved
yet

TC3.3.2.R5

Awareness level:
The component
should be able to
store the
awareness level
(SAL) metric.

Functionality
End User

& DoA
WP3

TC3.3.2
PathPlanning
API

MS10 - Final version
of the Simulation
Software - M24

S(hould) ISI In progress D3.3
Not

achieved
yet

TC3.3.2.NFR1
Minimize
centralized control

Usability WP3
TC3.3.2
PathPlanning
API

MS2 - CPSoSaware
specifications and
architecture - M24

C(ould) ISI
Deploy distributed
Laplacian based path
planning solutions

D3.3
Not

achieved
yet

TC3.3.2.NFR2
Minimize collision
risk

Usability WP3
TC3.3.2
PathPlanning
API

MS2 - CPSoSaware
specifications and
architecture - M24

S(hould) ISI
Optimize the attained
accuracy of cooperative
awareness solution

D3.3
Not

achieved
yet

TC3.3.2.NFR3
Maximize fault
tolerance

Reliability WP3
TC3.3.2
PathPlanning
API

MS2 - CPSoSaware
specifications and
architecture - M24

S(hould) ISI
Optimize the attained
accuracy of cooperative
awareness solution

D3.3
Not

achieved
yet

TC3.3.2.NFR4
Maximize
situational
awareness

Efficiency WP3
TC3.3.2
PathPlanning
API

MS2 - CPSoSaware
specifications and
architecture - M24

S(hould) ISI
Optimize the attained
accuracy of cooperative
awareness solution

D3.3
Not

achieved
yet

TC3.4.1.R1

Information
streams regarding
the task underway
improving focus

Reliability DoA WP3

TC3.4.1 XR tools
for increasing
situational
awareness

MS7 - Intermediate
CPHs Architecture
Design and
Implementation -
M24

C(ould) UPAT In progress D3.4
Not

achieved
yet

TC3.4.1.R2

Personalized
reminders
regarding other
parallel or
scheduled tasks
significantly

 DoA WP3

TC3.4.1 XR tools
for increasing
situational
awareness

 W(on't) UPAT D3.4 Rejected

62

improving
response time

TC3.4.1.R3

Notifications and
visual aids
regarding
imminent dangers
or accident-related
factors (e.g.,
pothole and
obstacle detection,
or operator
entering unsafe
(robot's) zone)

Functionality &
security

End User
& DoA

WP3

TC3.4.1 XR tools
for increasing
situational
awareness

MS7 - Intermediate
CPHs Architecture
Design and
Implementation -
M24

M(ust) UPAT

When a dangerous
situation appears then
a corresponding
notification will inform
the users

D3.4
Partially
achieved

TC3.4.1.R4
KPIs visualizing the
effectiveness of the
CPSoS functionality

Reliability DoA WP3

TC3.4.1 XR tools
for increasing
situational
awareness

MS7 - Intermediate
CPHs Architecture
Design and
Implementation -
M24

S(hould) UPAT
The estimated KPIs of a
functionality will be
presented to the users

D3.4
Not

achieved
yet

TC3.4.1.R5

Cooperative
situational
awareness.Visualiz
ation and use of
coalition
information
provided by other
vehicles or
interactive robots
(e.g., highlighting
of occluded
vehicles and
pedestrians)

Functionality &
security

DoA WP3

TC3.4.1 XR tools
for increasing
situational
awareness

MS7 - Intermediate
CPHs Architecture
Design and
Implementation -
M24

M(ust) UPAT
Use of coalition
information provided
by other vehicles

D3.4 Achieved

TC3.4.1.NFR1
Computational
efficiency (real-
time)

Efficiency
End User

& DoA
WP3

TC3.4.1 XR tools
for increasing
situational
awareness

MS7 - Intermediate
CPHs Architecture
Design and
Implementation -
M24

C(ould) UPAT

Parameterization of the
algorithm to be
computationally
efficient

D3.4
Partially
achieved

63

TC3.4.1.NFR2
User-friendly
interface

Usability
End User

& DoA
WP3

TC3.4.1 XR tools
for increasing
situational
awareness

MS8 - Final CPHs
Architecture Design
and Implementation -
M36

C(ould) UPAT

The provided
information will be
easy to understand by
the users

Not

achieved
yet

TC3.4.1.NFR3

Reliability and
robustness of the
provided
awareness sign

Reliability DoA WP3

TC3.4.1 XR tools
for increasing
situational
awareness

MS8 - Final CPHs
Architecture Design
and Implementation -
M36

S(hould) UPAT
We need to remove the
false alarm situations

D3.4
Not

achieved
yet

TC3.4.1.NFR4

Improve situational
awareness without
disturbing the
user's attention

Functionality
End User

& DoA
WP3

TC3.4.1 XR tools
for increasing
situational
awareness

MS8 - Final CPHs
Architecture Design
and Implementation -
M36

M(ust) UPAT
Provide intuitive and
non-distractive
information

D3.4
Not

achieved
yet

TC3.4.1.NFR5

Provide only useful
information based
on personalized
user's preferences

Usability
End User

& DoA
WP3

TC3.4.1 XR tools
for increasing
situational
awareness

 S(hould) UPAT
Take into account the
personal preferences of
the users

D3.4
Not

achieved
yet

TC3.5.1.R1

Logging
Mechanism: The
component should
be able to collect
logs of event that
take place in a CPS
platform

Functionality &
security

End User
& DoA

WP3
TC3.5.1 CPS
layer Security
sensors/agents

MS7 - Intermediate
CPHs Architecture
Design and
Implementation -
M24

M(ust) USI

A security event logging
mechanism has been
implemented as a C
code library and has
been integrated in the
CPSoSaware end node
security device

D3.5
Partially
achieved

TC3.5.1.R2

Data Integrity: The
component should
be able to ensure
integrity of
collected data that
are forwarded to
the CPSoSaware
Runtime
Monitoring System

Security
End User

& DoA
WP3

TC3.5.1 CPS
layer Security
sensors/agents

MS7 - Intermediate
CPHs Architecture
Design and
Implementation -
M24

M(ust) USI

A data integrity
mechanism based on
symmetric and public
key cryptography has
been implemented in
the CPSoSaware end
node using a hardware
security token

D3.5
Partially
achieved

TC3.5.1.R3

Data Authenticity:
The component
should be able to
ensure authenticity
of collected data
that are forwarded

Security
End User

& DoA
WP3

TC3.5.1 CPS
layer Security
sensors/agents

MS7 - Intermediate
CPHs Architecture
Design and
Implementation -
M24

S(hould) USI

A data integrity
mechanism based on
symmetric and public
key cryptography has
been implemented in
the CPSoSaware end

D3.5
Partially
achieved

64

to the CPSoSaware
Runtime
Monitoring System

node using a hardware
security token

TC3.5.1.R4

Detectability: The
component should
be able to detect
simple anomalous
events in the CPS
system (e.g.
related to false
data injection,
security attacks on
the device and CPS
network issues)

Security
End User

& DoA
WP3

TC3.5.1 CPS
layer Security
sensors/agents

MS8 - Final CPHs
Architecture Design
and Implementation -
M36

M(ust) USI In progress D3.5
Partially
achieved

TC3.5.1.R5

Secure channel
communication:
The component
should be able to
transmit in a
secure and trusted
way the collected
logs to the
CPSoSawre
Runtime
monitoring system.
This can be
manages through
end to end secure
communication

Functionality &
security

End User
& DoA

WP3
TC3.5.1 CPS
layer Security
sensors/agents

MS7 - Intermediate
CPHs Architecture
Design and
Implementation -
M24

M(ust) USI

A secure
communication
framework based on
symmetric and public
key cryptography
(TLS1.3 based) has
been implemented in
the CPSoSaware end
node using a hardware
security token

D3.5
Partially
achieved

TC3.5.1.NFR1
Efficiency
(response time)

Efficiency DoA WP3
TC3.5.1 CPS
layer Security
sensors/agents

MS7 - Intermediate
CPHs Architecture
Design and
Implementation -
M24

S(hould) USI

The computationally
demanding and slow
security components
that has been deployed
in the CPS layer are
accelerated through
hardware means to
match the efficiency
goals

D3.5
Partially
achieved

65

TC3.5.1.NFR2

Efficiency
(constrained
memory and chip
covered area
resources)

Efficiency DoA WP3
TC3.5.1 CPS
layer Security
sensors/agents

MS7 - Intermediate
CPHs Architecture
Design and
Implementation -
M24

C(ould) USI

The computationally
demanding and slow
security components
that has been deployed
in the CPS layer are
accelerated through
hardware means in an
optimal way that
minimizes the memory
and chip covered areas
usage

D3.5
Partially
achieved

TC3.5.1.NFR3

Flexibility so that
sensor components
can be updated
dynamically

Usability DoA WP3
TC3.5.1 CPS
layer Security
sensors/agents

MS7 - Intermediate
CPHs Architecture
Design and
Implementation -
M24

S(hould) USI

Security components
are becoming flexible
by using reconfigurable
logic (FPGA) at the
hardware level and
algorithmic
modifications at the
software level (when
needed)

D3.5
Partially
achieved

TC3.5.1.NFR4

Interoperability so
that sensors can be
used in various
different CPSs and
both pilots

Usability DoA WP3
TC3.5.1 CPS
layer Security
sensors/agents

MS8 - Final CPHs
Architecture Design
and Implementation -
M36

C(ould) USI

The security sensors
are generic and are not
applicable to any single
scenario. The Hardware
Security Token
deployed at the CPS
level has a generic CLI
environment (similar to
the openSSL CLI) that is
pilot and device
agnostic

D3.5
Not

achieved
yet

TC3.5.1.NFR5

Trusted
computation
following security
by design approach
and use of trusted
execution
environments

Security DoA WP3
TC3.5.1 CPS
layer Security
sensors/agents

MS8 - Final CPHs
Architecture Design
and Implementation -
M36

C(ould) USI

The security
components are
resistant against
various implementation
(side channel attacks)
thus thy can be
considered trusted.
Also, when applicable

D3.5
Not

achieved
yet

66

(supported by the
platform's hardware)
trusted execution
environments are used
for the execution of the
security functionality at
the CPS level

TC3.6.1.R1

Programmable co-
processor for cases
where hardware
customization is
useful, but runtime
programmability is
needed.

Functionality DoA WP3
TC3.6.1 TCE
(openasip.org)
soft cores

MS12 - Intermediate
CPSoSAware End to
End Platform and
Application Design -
M24

M(ust) TAU
The base functionality
works.

D2.3 Achieved

TC3.6.1.R2

Ability to execute
at least two
different tasks
defined by
switching the
software binary
only.

Functionality DoA WP3
TC3.6.1 TCE
(openasip.org)
soft cores

MS12 - Intermediate
CPSoSAware End to
End Platform and
Application Design -
M24

M(ust) TAU
The base functionality
works.

D2.3 Achieved

TC3.6.1.NFR1

Performance
requirements are
task/application
specific. Overall,
acceleration or
improved energy-
efficiency over
similar software on
a general purpose
processor is
required to justify
an ASIP.

Efficiency DoA WP3
TC3.6.1 TCE
(openasip.org)
soft cores

MS8 - Final CPHs
Architecture Design
and Implementation -
M36

S(hould) TAU
Efficiency will be
improved in T3.6.

D3.6
Partially
achieved

TC4.1.1.R1

Ability to easily add
IPs and co-
processors to
OpenCL platforms
that are
orchestrated from

Functionality &
integration

DoA WP4

TC4.1.1 OpenCL
Wrapper for
Hardware IP
Cores

MS2 - CPSoSaware
specifications and
architecture - M24

M(ust) TAU
The base functionality
works.

D2.3 Achieved

67

a single OpenCL
runtime.

TC4.1.1.NFR1

The
implementation
overhead of the
wrapper should be
less than 1% of the
wrapped design.

Functionality &
integration

DoA WP4

TC4.1.1 OpenCL
Wrapper for
Hardware IP
Cores

MS7 - Intermediate
CPHs Architecture
Design and
Implementation -
M24

S(hould) TAU
The base functionality
works.

D2.3 Achieved

TC4.1.2.R1
HLS based SW to
HW
Transformation

Efficiency
End User

& DoA
WP4

TC4.1.2
Profiling

MS7 - Intermediate
CPHs Architecture
Design and
Implementation -
M24

M(ust) UOP
HLS implementation of
the DSM kernels

D4.1
Partially
achieved

TC4.1.2.R2

Commissioning:
The component
should be able to
collect hardware
bitstreams IP Cores
and download
them on the FPGA
fabric of a
Multiprocessor
System on Chip
FPGA board.

Efficiency
End User

& DoA
WP4

TC4.1.2
Profiling

MS7 - Intermediate
CPHs Architecture
Design and
Implementation -
M24

M(ust) UOP

Vitis XRT is used to
implement HW kernel
commissioning in the
DSM module

D4.1
Partially
achieved

TC4.1.2.R3

Reconfigurability:
The components
should be able to
reconfigure the
commissioned
hardware IP Cores
on the FPGA fabric

Efficiency
End User

& DoA
WP4

TC4.1.2
Profiling

MS7 - Intermediate
CPHs Architecture
Design and
Implementation -
M24

M(ust) UOP
Vitis XRT is used to
support dynamic HW
reconfiguration

D4.1
Partially
achieved

TC4.1.2.R4

Multiprocessor
System on Chip
FPGA board and
replace existing
hardware IP Cores.

Efficiency
End User

& DoA
WP4

TC4.1.2
Profiling

MS7 - Intermediate
CPHs Architecture
Design and
Implementation -
M24

M(ust) UOP
FPGAs with multiple
ARM processors were
employed

D4.1
Partially
achieved

TC4.1.2.R5
Removal: The
component should

Efficiency
End User

& DoA
WP4

TC4.1.2
Profiling

MS7 - Intermediate
CPHs Architecture

M(ust) UOP
Dynamic
reconfiguration of HW

D4.1
Partially
achieved

68

be able to remove
existing hardware
IP Cores in the
FPGA fabric of a
Multiprocessor
System on Chip
(MPSoS) FPGA
board.

Design and
Implementation -
M24

kernels implies HW
kernel removal

TC4.1.2.R6

Accessibility: The
component should
be able to
communicate with
the model based
design mechanism
of the CPSoSaware
layer in order to
deploy hardware IP
Cores in the MPSoC
board.

Efficiency
End User

& DoA
WP4

TC4.1.2
Profiling

MS7 - Intermediate
CPHs Architecture
Design and
Implementation -
M24

M(ust) UOP

Implemented as part of
the dynamic
reconfiguration of HW
kernels

D4.1
Partially
achieved

TC4.1.2.R7

IP Core Software
Support: The
component should
be able to deploy
appropriate
software driver
components on the
runtime system
(embedded OS or
bare metal API)
been executed on a
MPSoC FPGA board
so that hardware IP
Cores are
accessible. Support
for POCL tool could
be offered

Efficiency
End User

& DoA
WP4

TC4.1.2
Profiling

MS7 - Intermediate
CPHs Architecture
Design and
Implementation -
M24

M(ust) UOP

Xilinx XRT requires
appropriate drivers to
support the
configuration of any
HW kernel. PoCL
integration is also
investigated

D4.1
Partially
achieved

TC4.1.2.R8
Accelerate DNN
inference in
comparison to

Efficiency
End User

& DoA
WP4

TC4.1.2
Profiling

MS7 - Intermediate
CPHs Architecture
Design and

M(ust) UOP
CNN for handwritten
character recognition

D4.1
Partially
achieved

69

software running in
ARM

Implementation -
M24

implemented using
PoCL interface

TC4.1.2.NFR1

Reliability and
robustness of the
suggested
assembly steps.

Reliability
End User

& DoA
WP4

TC4.1.2
Profiling

MS7 - Intermediate
CPHs Architecture
Design and
Implementation -
M24

M(ust) UOP

Reliability and
robustness of assembly
is guaranteed by Xilinx
Vitis, XRT. Additional
checks will be used
where applicable

D4.1
Partially
achieved

TC4.1.2.NFR2

Programmable co-
processor for cases
where hardware.
(TC3.6.1.R1)
customization is
useful, but runtime
programmability is
needed.

Efficiency
End User

& DoA
WP4

TC4.1.2
Profiling

MS6 - Preliminary
CPHs Architecture
Design and
Implementation -
M12

C(ould) UOP
Will be investigated if
applicable

D4.1
Not

achieved
yet

TC4.1.2.NFR3

Performance
requirements are
task/application
specific. Overall,
acceleration or
improved energy-
efficiency over
similar software on
a general-purpose
processor is
required to justify
an ASIP.

Efficiency
End User

& DoA
WP4

TC4.1.2
Profiling

MS7 - Intermediate
CPHs Architecture
Design and
Implementation -
M24

M(ust) UOP

Comparison is
performed concerning
the accuracy, speed,
energy consumption
between accelerated
functions and their
original SW
implementations (e.g.
DSM module)

D4.1
Partially
achieved

TC4.1.3.R1

Input. The
component must
handle input in a
mathematical
optimization
format, providing
the necessary

Functionality
End User

& DoA
WP4

TC4.1.3
Architecture
Optimization

MS8 - Final CPHs
Architecture Design
and Implementation -
M36

M(ust) IBM
Will be adapted from
CERBERO4

D4.6
Not

achieved
yet

4 https://www.cerbero-h2020.eu/

70

abstractions to
model (with
decision variables)
CPSs/CPHSs
including both
hardware and
software
components and
their connections.

TC4.1.3.R2

Objective. The
component should
be capable of
optimizing a variety
of objective
functions. This
does not include
simultaneous
multiple objectives
(Pareto front).

Functionality
End User

& DoA
WP4

TC4.1.3
Architecture
Optimization

MS8 - Final CPHs
Architecture Design
and Implementation -
M36

S(hould) IBM
Will be adapted from
CERBERO

D4.6
Not

achieved
yet

TC4.1.3.R3

Constraints. The
component must
be able to handle
connection,
application, and
resource
constraints.

Functionality
End User

& DoA
WP4

TC4.1.3
Architecture
Optimization

MS8 - Final CPHs
Architecture Design
and Implementation -
M36

M(ust) IBM
Will be adapted from
CERBERO

D4.6
Not

achieved
yet

TC4.1.3.R4

Output. The
component should
produce as output
a hardware-
software
partitioning that is
optimal according
to the specified
mathematical
optimization
problem.

Functionality
End User

& DoA
WP4

TC4.1.3
Architecture
Optimization

MS8 - Final CPHs
Architecture Design
and Implementation -
M36

S(hould) IBM
Will be adapted from
CERBERO

D4.6
Not

achieved
yet

71

TC4.1.3.NFR1
Efficiency
(response time)

Efficiency
End User

& DoA
WP4

TC4.1.3
Architecture
Optimization

MS8 - Final CPHs
Architecture Design
and Implementation -
M36

C(ould) IBM
Will be adapted from
CERBERO

D4.6
Not

achieved
yet

TC4.1.3.NFR2
Efficiency
(optimality)

Efficiency
End User

& DoA
WP4

TC4.1.3
Architecture
Optimization

MS8 - Final CPHs
Architecture Design
and Implementation -
M36

C(ould) IBM
Will be adapted from
CERBERO

D4.6
Not

achieved
yet

TC4.1.3.NFR3
Feasibility of
solution

Functionality
End User

& DoA
WP4

TC4.1.3
Architecture
Optimization

MS8 - Final CPHs
Architecture Design
and Implementation -
M36

S(hould) IBM
Will be adapted from
CERBERO

D4.6
Not

achieved
yet

TC4.2.1.R1

SW agents running
on the HW
platform monitor
the network
performance under
the current
network
configuration for
specific application
scenario

Reliability
End User

& DoA
WP4

TC4.2.1 Intra-
Communication
Manager

MS7 - Intermediate
CPHs Architecture
Design and
Implementation -
M24

M(ust) UOP
Metrics of the network
traffic will be recorded
in application level

D3.2 & D5.2
Not

achieved
yet

TC4.2.1.R2

The performance
outcome is
processed in order
to evaluate
whether the
application
requirements are
met

Efficiency DoA WP4
TC4.2.1 Intra-
Communication
Manager

MS7 - Intermediate
CPHs Architecture
Design and
Implementation -
M24

C(ould) UOP
Metrics of the network
traffic will be recorded
in application level

D3.2 & D5.2
Not

achieved
yet

TC4.2.1.R3

SW agent running
on the HW is
responsible to
receive new
network
configuration
and/or network
interface firmware

Functionality &
Integration

End User
& DoA

WP4
TC4.2.1 Intra-
Communication
Manager

MS7 - Intermediate
CPHs Architecture
Design and
Implementation -
M24

M(ust) UOP

MQTT subscriber listen
for configuration
updates on the
network properties

D3.2 & D5.2 Achieved

72

to apply on the
device

TC4.2.1.NFR1

The device should
be able to recover
from failing
network
firmware/configura
tion update

Reliability
End User

& DoA
WP4

TC4.2.1 Intra-
Communication
Manager

MS7 - Intermediate
CPHs Architecture
Design and
Implementation -
M24

C(ould) UOP
Handle exceptional
cases and revert to
previous state

D3.2 & D5.2
Partially
achieved

TC4.2.1.NFR2

SW agent should
be able to verify
the integrity of the
received payloads

Reliability DoA WP4
TC4.2.1 Intra-
Communication
Manager

MS7 - Intermediate
CPHs Architecture
Design and
Implementation -
M24

M(ust) UOP

Hashing algorithms will
be used to verify that
received payloads has
been successfully
received

D3.2 & D5.2 Achieved

TC4.2.1.NFR3

Versioning of the
applied
configurations
should be
supported

Maintainability DoA WP4
TC4.2.1 Intra-
Communication
Manager

MS7 - Intermediate
CPHs Architecture
Design and
Implementation -
M24

C(ould) UOP
A version property will
be part of the
commissioning payload

D3.2 & D5.2 Achieved

TC4.2.1.NFR4

Authentication/Aut
horization for
receiving
configuration
updates

Security
End User

& DoA
WP4

TC4.2.1 Intra-
Communication
Manager

MS7 - Intermediate
CPHs Architecture
Design and
Implementation -
M24

M(ust) UOP

Two
authentication/authoriz
ation schemes will be
investigated.
1. Basic authentication
2. Mutual SSL

D3.2 & D5.2
Not

achieved
yet

TC4.3.1.R1

Input. The
component must
receive normalized
security events
through TCP/41000
from
agents/sensors
deployed remotely,
in the
infrastructure that
is under
surveillance.
Events comply with

Functionality &
integration

End user WP4
TC4.3.1 Security
Runtime
Monitoring

MS7 - Intermediate
CPHs Architecture
Design and
Implementation -
M24

M(ust) ATOS

ATOS provides sensors
and integrates them
with the SRMM. If
some partner provides
sensors from their side,
ATOS can integrate
them mainly by
normalizing the data
format

D3.5, D4.3,
D4.8

Achieved

73

a predefined JSON
format.

TC4.3.1.R2

Configuration. The
component should
be configured
using the
component's
graphical
dashboard, to
define the security
monitoring
infrastructure in
use (topology of
sensors/agents
deployed and
active), the security
detection rules and
the correlation
directives.

Functionality &
integration

End User
& DoA

WP4
TC4.3.1 Security
Runtime
Monitoring

MS7 - Intermediate
CPHs Architecture
Design and
Implementation -
M24

S(hould) ATOS

Two possible ways:
either using the existing
interface developed by
ATOS from other
projects, and making
needed adaptations, or
developing a specific
configuration interface
in CPSoSAware. This
remains to be decided

D2.2, D4.3,
D4.8

Not
achieved

yet

TC4.3.1.R3

Events Processing.
The component
must process
security events
received as input,
correlate them
using the security
detection rules
configured, and
generate security
alarms as output,
as defined in the
correlation
directives
configured.

Functionality
End User

& DoA
WP4

TC4.3.1 Security
Runtime
Monitoring

MS7 - Intermediate
CPHs Architecture
Design and
Implementation -
M24

M(ust) ATOS

We need to define the
needed correlation
rules to be applied in
the SRMM

D4.3, D4.8
Partially
achieved

TC4.3.1.R4

Output. The
component should
produce as output
security alarms.
Alarms comply

Functionality &
integration

End User
& DoA

WP4
TC4.3.1 Security
Runtime
Monitoring

MS7 - Intermediate
CPHs Architecture
Design and
Implementation -
M24

S(hould) ATOS

Alarms are produced
following the internal
correlation process of
the SRMM. JSON
format to be confirmed

D4.3, D4.8
Partially
achieved

74

with a predefined
JSON format.
Alarms can be
configured to be
persisted in a DB,
logged into a file,
transmitted to a
third-party
component (using
a middleware such
as Message
Queue/Broker) and
displayed in the
SRMM graphical
dashboard.

within the Consortium
as it will have to be
used by the CSAIE
(T2.1). Message
brokering technology
needs to be confirmed.
We have preference for
AMQP or Kafka

TC4.3.1.R5

Cross-correlation.
Security alarms
produced as output
by the SRMM can
be configured to be
input into the
SRMM correlation
engine, for cross-
correlation
processes.

Functionality End user WP4
TC4.3.1 Security
Runtime
Monitoring

MS8 - Final CPHs
Architecture Design
and Implementation -
M36

C(ould) ATOS

The capability of
performing cross-
correlation already
exists. It is to be
expected that new
rules are produced in
the context of the
project

D4.3, D4.8
Partially
achieved

TC4.3.1.NFR1

Scalability - of the
SRMM correlation
engine and data
collection module

Maintainability End user WP4
TC4.3.1 Security
Runtime
Monitoring

MS8 - Final CPHs
Architecture Design
and Implementation -
M36

M(ust) ATOS

It will be achieved by
enhancements made to
the assets during the
project

D4.8
Partially
achieved

TC4.3.1.NFR2

High-performance -
of the SRMM
correlation engine
and the data
persistence layer

Efficiency End user WP4
TC4.3.1 Security
Runtime
Monitoring

MS8 - Final CPHs
Architecture Design
and Implementation -
M36

M(ust) ATOS

During the project we
will research on how to
improve the
performance of the
asset, which is
currently high. We still
have no information on
how stressed the
component will be
during the piloting tests

D4.8, D6.3
Partially
achieved

75

TC4.3.1.NFR3

Integrity - of the
security events
transmitted from
sensors/agents to
the SRMM
component, and of
the security alarms
generated as
output by the
SRMM

Security End user WP4
TC4.3.1 Security
Runtime
Monitoring

MS7 - Intermediate
CPHs Architecture
Design and
Implementation -
M24

M(ust) ATOS Already achieved D4.3 Achieved

TC4.3.1.NFR4

Confidentiality - of
the security events
transmitted from
sensors/agents to
the SRMM
component, and of
the security alarms
generated as
output by the
SRMM

Security End user WP4
TC4.3.1 Security
Runtime
Monitoring

MS7 - Intermediate
CPHs Architecture
Design and
Implementation -
M24

M(ust) ATOS Already achieved D4.3 Achieved

TC4.3.1.NFR5

Accountability - of
the security events
transmitted from
sensors/agents to
the SRMM
component, of the
correlation process
and of the security
alarms generated
as output by the
SRMM

Security End user WP4
TC4.3.1 Security
Runtime
Monitoring

MS7 - Intermediate
CPHs Architecture
Design and
Implementation -
M24

M(ust) ATOS Already achieved D4.3 Achieved

TC4.4.1.R1
ROS/ROS2
interface

Functionality &
integration

End user WP4
TC4.4.1 V2X
simulator

 C(ould) I2CAT
Not

achieved
yet

TC4.4.1.R2
V2X representation
of state in AV
simulator

Functionality &
integration

End User
& DoA

WP4
TC4.4.1 V2X
simulator

MS10 - Final version
of the Simulation
Software - M24

M(ust) I2CAT D4.2
Partially
achieved

76

TC4.4.1.NFR1
Possibility of
running in real
time

Efficiency End user WP4
TC4.4.1 V2X
simulator

 W(on't) I2CAT

The simulation of V2X
message transmission
takes a lot of time and
it is not feasible to run
it in real time as the AV
simulator does.

Not

achieved
yet

TC4.4.1.NFR2

Modular
architecture
integrated in
simulation
framework

Maintainability End user WP4
TC4.4.1 V2X
simulator

MS10 - Final version
of the Simulation
Software - M24

M(ust) I2CAT Already achieved D.4.2 Achieved

TC4.4.3.R1

Machine learning
support for
perception
algorithms

Functionality DoA WP4
TC4.4.3 AV
Simulation

MS10 - Final version
of the Simulation
Software - M24

M(ust) RTC

In terms of support for
Machine Learning,
sensor data together
with corresponding
labels are generated by
the simulator.

D2.2
Partially
achieved

TC4.4.3.R2

User control:
Simulation should
allow users to
control all critical
aspects in the
simulation through
dedicated API (e.g.
agents behavior or
sensors).

Functionality DoA WP4
TC4.4.3 AV
Simulation

MS10 - Final version
of the Simulation
Software - M24

M(ust) RTC

Simulation can be
controlled by json
configuration files and
Python API

D2.2
Partially
achieved

TC4.4.3.R3

Integration with
middleware:
Simulation solution
should offer
integration with
state-of-the-art
robotics
middleware (e.g.
ROS and ROS2)

Integration DoA WP4
TC4.4.3 AV
Simulation

MS10 - Final version
of the Simulation
Software - M24

M(ust) RTC
Simulator is integrated
with ROS2 middleware

D2.2 Achieved

TC4.4.3.NFR1
Simple way of
defining test
scenarios

Functionality DoA WP4
TC4.4.3 AV
Simulation

MS10 - Final version
of the Simulation
Software - M24

M(ust) RTC
Definition of test
scenarios in Python API
and json files

D2.2 Achieved

77

TC4.4.3.NFR2

Scalability to
multiple agents
control -
Simulation should
provide multiple
clients that can
control different
actors.

Functionality DoA WP4
TC4.4.3 AV
Simulation

MS10 - Final version
of the Simulation
Software - M24

M(ust) RTC
Multiple agents
support implemented

D2.2 Achieved

TC4.4.3.NFR3

Scalability to cloud
services -
Simulation should
be able to run on
scalable cloud
services to run
multiple simulation
scenarios (e.g.
Google Cloud,
Microsoft Azure or
other).

Integration DoA WP4
TC4.4.3 AV
Simulation

MS10 - Final version
of the Simulation
Software - M24

S(hould) RTC
Cloud deployment of
the simulator will be
implemented

D2.2
Not

achieved
yet

TC4.4.3.NFR4

Fast execution:
Software should
offer a fast
execution
simulation for
which graphics are
not required.

Functionality DoA WP4
TC4.4.3 AV
Simulation

MS10 - Final version
of the Simulation
Software - M24

S(hould) RTC

The simulator is highly
optimized for fast and
real-time execution of
test scenarios

D2.2
Partially
achieved

TC4.4.3.NFR5

Diagnostic and
Error Handling -
Simulation should
offer diagnostic
and error handling

Functionality DoA WP4
TC4.4.3 AV
Simulation

MS10 - Final version
of the Simulation
Software - M24

S(hould) RTC
Diagnostics will be
implemented, currently
only initialized.

D2.2
Partially
achieved

TC4.4.3.NFR6

Determinism -
Simulation should
ensure
determinism

Reliability DoA WP4
TC4.4.3 AV
Simulation

MS10 - Final version
of the Simulation
Software - M24

S(hould) RTC
Simulation is mostly
deterministic

D2.2
Partially
achieved

TC4.4.3.NFR7
Modular System
Architecture -
Simulation should

Functionality &
integration

DoA WP4
TC4.4.3 AV
Simulation

MS10 - Final version
of the Simulation
Software - M24

M(ust) RTC
Architecture of all
simulation components
is modular

D2.2 Achieved

78

have modular
system
architecture

TC4.5.1.R1

Ontology schemas
should be
expressed in RDF,
n-triples, OWL or
other established
ontology formats

Functionality
End User

& DoA
WP4

TC4.5.1
Semantic
Knowledge
Graph

MS7 - Intermediate
CPHs Architecture
Design and
Implementation -
M24

M(ust) CTL

Ontology schemas have
been developed using
established editors like
Protege. The exported
files are expressed in
RDF-compliant formats,
such as Turtle (.ttl) and
n-triples (.nt).

D4.5 Achieved

TC4.5.1.R2

The deployed RDF
triplestore should
provide a SPARQL-
enabled endpoint
(API).

Functionality &
integration

End User
& DoA

WP4

TC4.5.1
Semantic
Knowledge
Graph

MS7 - Intermediate
CPHs Architecture
Design and
Implementation -
M24

M(ust) CTL

The free version of
GraphDB has been
selected as triplestore.
It provides a SPARQL
endpoint.

D4.5 Achieved

TC4.5.1.R3
The RDF triplestore
should support
SHACL.

Functionality
End User

& DoA
WP4

TC4.5.1
Semantic
Knowledge
Graph

MS7 - Intermediate
CPHs Architecture
Design and
Implementation -
M24

C(ould) CTL

GraphDB supports
SHACL, however this
feature will not be used
in TC4.5.1.

D4.5 Redundant

TC4.5.1.R4

The RDF triplestore
should support
concurrent
execution of
queries

Functionality
End User

& DoA
WP4

TC4.5.1
Semantic
Knowledge
Graph

MS7 - Intermediate
CPHs Architecture
Design and
Implementation -
M24

S(hould) CTL

The free version of
GraphDB supports up
to two concurrent
queries. This is
adequate, as
concurrency (when
implemented) can be
easily extended to
more than two queries.

D4.5 Achieved

TC4.5.1.NFR1

Domain experts
should support the
definition of the
ontology schema
by providing
domain knowledge
to the semantic
experts.

Reliability
End User

& DoA
WP4

TC4.5.1
Semantic
Knowledge
Graph

MS7 - Intermediate
CPHs Architecture
Design and
Implementation -
M24

M(ust) CTL

Collaboration with
CPSoSaware partners
(domain experts and
component owners)

D4.5 Achieved

79

TC4.5.1.NFR2

The RDF tiplestore
should be on
industry level, able
to handle several
millions of RDF
triples.

Efficiency
End User

& DoA
WP4

TC4.5.1
Semantic
Knowledge
Graph

MS7 - Intermediate
CPHs Architecture
Design and
Implementation -
M24

M(ust) CTL
GraphDB is industry
level

D4.5 Achieved

TC4.5.2.R1

The component
should support
concurrent
requests.

Functionality &
integration

End User
& DoA

WP4

TC4.5.2
Semantic
Knowledge
Graph Service

MS7 - Intermediate
CPHs Architecture
Design and
Implementation -
M24

S(hould) CTL

The service is
implemented as a REST
API, which supports
concurrent request.

D4.5 Achieved

TC4.5.2.R2

The component
should provide
services for data
population to
TC4.5.1

Functionality &
integration

End User
& DoA

WP4

TC4.5.2
Semantic
Knowledge
Graph Service

MS7 - Intermediate
CPHs Architecture
Design and
Implementation -
M24

M(ust) CTL
SPARQL queries to
TC4.5.1 endpoint.

D4.5 Achieved

TC4.5.2.R3

The component
should provide
services for data
retrieval from
TC4.5.1

Functionality &
integration

End User
& DoA

WP4

TC4.5.2
Semantic
Knowledge
Graph Service

MS7 - Intermediate
CPHs Architecture
Design and
Implementation -
M24

M(ust) CTL
SPARQL queries to
TC4.5.1 endpoint.

D4.5 Achieved

TC4.5.2.R4

The component
should allow the
semantic reasoning
mechanism to be
triggered by other
component
requests.

Functionality &
integration

End User
& DoA

WP4

TC4.5.2
Semantic
Knowledge
Graph Service

MS7 - Intermediate
CPHs Architecture
Design and
Implementation -
M24

M(ust) CTL

Appropriate API
services will be
implemented to trigger
reasoning.

D4.5
Partially
achieved

TC4.5.2.R5

The component
should be able to
apply different
reasoning rulesets
in a modular way.

Functionality
End User

& DoA
WP4

TC4.5.2
Semantic
Knowledge
Graph Service

MS7 - Intermediate
CPHs Architecture
Design and
Implementation -
M24

S(hould) CTL

Reasoning rulesets will
be defined as SPARQL
queries stored in JSON-
formatted files.

D4.5
Not

achieved
yet

TC4.5.2.NFR1

Domain experts
and end-users
should support the
definition of
meaningful

Reliability
End User

& DoA
WP4

TC4.5.2
Semantic
Knowledge
Graph Service

MS7 - Intermediate
CPHs Architecture
Design and
Implementation -
M24

M(ust) CTL

Collaboration with
CPSoSaware partners
(domain experts and
component owners)

D4.5
Partially
achieved

80

semantic reasoning
rules.

TC4.5.2.NFR2

Other component
owners should
express
requirements for
specific API
services for data
insertion/retrieval.

Integration
End User

& DoA
WP4

TC4.5.2
Semantic
Knowledge
Graph Service

MS7 - Intermediate
CPHs Architecture
Design and
Implementation -
M24

M(ust) CTL

Collaboration with
CPSoSaware partners
(domain experts and
component owners)

D4.5
Partially
achieved

TC4.5.2.NFR3

The provided
services should be
as generic/re-
usable as possible,
with multiple
parameters for
result
customization.

Usability
End User

& DoA
WP4

TC4.5.2
Semantic
Knowledge
Graph Service

MS7 - Intermediate
CPHs Architecture
Design and
Implementation -
M24

S(hould) CTL

REST API design and
implementation
considers this
requirement.

D4.5
Partially
achieved

TC4.6.1.R1

Commissioning:
The component
should be able to
collect hardware
bitstreams IP Cores
and download
them on the FPGA
fabric of a
Multiprocessor
System on Chip
FPGA board

 WP4

TC4.6.1
Commissioning
of Hardware
Components in
CPSs

 IBM Obsolete

TC4.6.1.R2

Reconfigurability:
The components
should be able to
reconfigure the
commisioned
hardware IP Cores
on the FPGA fabric

 WP4

TC4.6.1
Commissioning
of Hardware
Components in
CPSs

 IBM Obsolete

TC4.6.1.R3
Multiprocessor
System on Chip
FPGA board and

 WP4
TC4.6.1
Commissioning
of Hardware

 IBM Obsolete

81

replace existing
hardware IP Cores

Components in
CPSs

TC4.6.1.R4

Removal: The
component should
be able to remove
existing hardware
IP Cores in the
FPGA fabric of a
Multiprocessor
System on Chip
(MPSoS) FPGA
board

 WP4

TC4.6.1
Commissioning
of Hardware
Components in
CPSs

 IBM Obsolete

TC4.6.1.R5

Accesibility: The
component should
be able to
communicate with
the model based
design mechanism
of the CPSoSaware
layer in order to
deploy hardware IP
Cores in the MPSoC
board

 WP4

TC4.6.1
Commissioning
of Hardware
Components in
CPSs

 IBM Obsolete

TC4.6.1.R6

IP Core Software
Support: The
component should
be able to deploy
appropriate
software driver
components on the
runtime system
(embedded OS or
bare metal API)
been executed on a
MPSoC FPGA board
so that hardware IP
Cores are
accessible. Support

 WP4

TC4.6.1
Commissioning
of Hardware
Components in
CPSs

 IBM Obsolete

82

for POCL tool could
be offered

TC4.6.1.NFR1

The component
should be able to
validate that
connectivity exists
and recover from
possible network
failures.

 WP4

TC4.6.1
Commissioning
of Hardware
Components in
CPSs

 IBM Obsolete

TC4.6.1.NFR2

The component
should be able to
handle efficiently
the configuration
updates and
resolve any
possible
dependencies.

 WP4

TC4.6.1
Commissioning
of Hardware
Components in
CPSs

 IBM Obsolete

TC4.6.1.NFR3

The component
should be able to
provide integrity
validation method
in both ends (e.g.
hashes of the
transferred
payloads).

 WP4

TC4.6.1
Commissioning
of Hardware
Components in
CPSs

 IBM Obsolete

TC4.6.1.NFR4

The component
should be aware of
the commissioning
process’ status and
handle failures
(e.g. rollback to
previous versions).

 WP4

TC4.6.1
Commissioning
of Hardware
Components in
CPSs

 IBM Obsolete

TC5.1.1.R1 Profiling Efficiency
End User

& DoA
WP5

TC5.1.1 HLS
based SW to
HW
Transformation

MS7 - Intermediate
CPHs Architecture
Design and
Implementation -
M24

M(ust) UOP
Profiling using Xilinx
Vitis

D5.1
Partially
achieved

83

TC5.1.1.R2

Commissioning of
Hardware
Components in
CPSs

Functionality
End User

& DoA
WP5

TC5.1.1 HLS
based SW to
HW
Transformation

MS7 - Intermediate
CPHs Architecture
Design and
Implementation -
M24

M(ust) UOP
Implemented using
Xilinx XRT

D5.1
Partially
achieved

TC5.1.1.R3 Reconfigurability Efficiency
End User

& DoA
WP5

TC5.1.1 HLS
based SW to
HW
Transformation

MS7 - Intermediate
CPHs Architecture
Design and
Implementation -
M24

M(ust) UOP

XRT will be used to
implement dynamic
reconfiguration of
kernels and face
alignment model
switching

D5.1
Partially
achieved

TC5.1.1.R4
IP Core Software
Support

Functionality
End User

& DoA
WP5

TC5.1.1 HLS
based SW to
HW
Transformation

MS7 - Intermediate
CPHs Architecture
Design and
Implementation -
M24

M(ust) UOP

HW kernels and their
drivers are developed
and tested
simultaneously in Xilinx
Vitis

D5.1
Partially
achieved

TC5.1.1.R5
ML Hardware
Accelerator IP
Cores

Functionality
End User

& DoA
WP5

TC5.1.1 HLS
based SW to
HW
Transformation

MS7 - Intermediate
CPHs Architecture
Design and
Implementation -
M24

M(ust) UOP

Face alignment and
CNN for handwritten
character recognition
have been
implemented on FPGA

D5.1
Partially
achieved

TC5.1.1.R6

Accelerate DNN
inference in
comparison to
software running in
ARM.

Efficiency
End User

& DoA
WP5

TC5.1.1 HLS
based SW to
HW
Transformation

MS7 - Intermediate
CPHs Architecture
Design and
Implementation -
M24

M(ust) UOP

CNN for handwritten
character recognition
implemented both in
SW and HW and
compared

D5.1
Partially
achieved

TC5.1.1.R7

Provide access to
all OpenCL-
supported devices
in a network
distributed
platform from a
single host
application.

Functionality
End User

& DoA
WP5

TC5.1.1 HLS
based SW to
HW
Transformation

MS7 - Intermediate
CPHs Architecture
Design and
Implementation -
M24

M(ust) UOP

CNN for handwritten
character recognition
implemented using
PoCL

D5.1
Partially
achieved

TC5.1.1.NFR1

Development of
HW-SW Library
with reliable
Components.

Efficiency
End User

& DoA
WP5

TC5.1.1 HLS
based SW to
HW
Transformation

MS7 - Intermediate
CPHs Architecture
Design and

M(ust) UOP
FPGA implementations
of DSM components as
well as other HSL

D3.6
Partially
achieved

84

Implementation -
M24

components used to
populate this library

TC5.1.1.NFR2

Performance
requirements are
task/application
specific. Overall,
acceleration or
improved energy-
efficiency over
similar software on
a general-purpose
processor is
required to justify
an ASIC.

Efficiency
End User

& DoA
WP5

TC5.1.1 HLS
based SW to
HW
Transformation

MS7 - Intermediate
CPHs Architecture
Design and
Implementation -
M24

M(ust) UOP

Comparison is
performed concerning
the accuracy, speed,
energy consumption
between accelerated
functions and their
original SW
implementations (e.g.
DSM module)

D4.1
Partially
achieved

TC5.3.1.R1

Involve
gamification of
learning which
makes the process
fun and interactive.

Usability DoA WP5

TC5.3.1
Extended
Reality lifelong
learning
tools/Interfaces
for integrated
CPSoS

MS8 - Final CPHs
Architecture Design
and Implementation -
M36

S(hould) UPAT

Development of a XR
learning tool/interface
for getting trained in
VR, supported by visual
hints and feedback on
performance,

D5.2
Not

achieved
yet

TC5.3.1.R2

Provide visual cues
in a distraction-free
environment which
helps the users to
better understand
the concepts.

Efficiency DoA WP5

TC5.3.1
Extended
Reality lifelong
learning
tools/Interfaces
for integrated
CPSoS

MS8 - Final CPHs
Architecture Design
and Implementation -
M36

M(ust) UPAT
Visualization of safety
zones in AR

D5.2
Partially
achieved

TC5.3.1.R3

The technologies
come with
intelligent learning
content and
provide real-time
responses.

 DoA WP5

TC5.3.1
Extended
Reality lifelong
learning
tools/Interfaces
for integrated
CPSoS

 W(on't) UPAT D5.2 Rejected

TC5.3.1.R4
The trainee can
easily accomplish
the mapping

Functionality DoA WP5
TC5.3.1
Extended
Reality lifelong

MS7 - Intermediate
CPHs Architecture
Design and

S(hould) UPAT
Development of new
training material based
on interactive

D5.2
Not

achieved
yet

85

between the
training and the
real task and is also
able to access
additional training
material or
information about
the virtual objects.

learning
tools/Interfaces
for integrated
CPSoS

Implementation -
M24

simulations of the work
task

TC5.3.1.R5

AR/VR can support
assembly tasks in
hybrid human-
machine
manufacturing
lines, improving
efficiency and
ergonomics.

Efficiency DoA WP5

TC5.3.1
Extended
Reality lifelong
learning
tools/Interfaces
for integrated
CPSoS

MS8 - Final CPHs
Architecture Design
and Implementation -
M36

C(ould) UPAT
Training scenario
without the need of an
actual human user.

D5.2
Not

achieved
yet

TC5.3.1.NFR1
Computational
efficiency (real-
time).

Efficiency DoA WP5

TC5.3.1
Extended
Reality lifelong
learning
tools/Interfaces
for integrated
CPSoS

MS8 - Final CPHs
Architecture Design
and Implementation -
M36

S(hould) UPAT

Parameterization of the
algorithm to be
computationally
efficient

D5.2
Not

achieved
yet

TC5.3.1.NFR2
User-friendly
interface.

Usability DoA WP5

TC5.3.1
Extended
Reality lifelong
learning
tools/Interfaces
for integrated
CPSoS

MS3 - CPSoSaware
Final architecture -
M36

S(hould) UPAT

The provided
information will be
easy to be understood
by all users

D5.2
Not

achieved
yet

TC5.3.1.NFR3

Reliability and
robustness of the
suggested
assembly steps.

Reliability DoA WP5

TC5.3.1
Extended
Reality lifelong
learning
tools/Interfaces
for integrated
CPSoS

MS7 - Intermediate
CPHs Architecture
Design and
Implementation -
M24

S(hould) UPAT

The suggested
assembly steps will be
based on the
personalized users'
preference and
experience

D5.2
Partially
achieved

86

TC5.3.1.NFR4

Improve the
learning procedure
without disturbing
the user's
attention.

Usability DoA WP5

TC5.3.1
Extended
Reality lifelong
learning
tools/Interfaces
for integrated
CPSoS

MS7 - Intermediate
CPHs Architecture
Design and
Implementation -
M24

S(hould) UPAT

Providing intuitive and
non-distractive
information so that to
simplify the training
process and emphasize
the learning procedure

D5.2
Partially
achieved

TC5.3.1.NFR5

Provide only these
type of help and
instructions based
on personalized
user's preferences.

Usability DoA WP5

TC5.3.1
Extended
Reality lifelong
learning
tools/Interfaces
for integrated
CPSoS

MS7 - Intermediate
CPHs Architecture
Design and
Implementation -
M24

S(hould) UPAT

Taking into account the
personal preferences of
the users during the
training process into
the simulators

D5.2
Partially
achieved

TC5.3.2.R1
Machine learning
support

 WP5

TC5.3.2
Manufacturing
Environment
Simulation

 UPAT Obsolete

TC5.3.2.R2

Possibility of
modelling
additional
elements of use
case scenarios:
humans, light
curtain, safety eye,
etc.

Functionality DoA WP5

TC5.3.2
Manufacturing
Environment
Simulation

MS3 - CPSoSaware
Final architecture -
M36

S(hould) UPAT Already achieved D5.3 Achieved

TC5.3.2.R3
Available models of
robotic arms used
in CRF factory

Functionality DoA WP5

TC5.3.2
Manufacturing
Environment
Simulation

MS3 - CPSoSaware
Final architecture -
M36

S(hould) UPAT

Designing digital twins
of the robotic models
that are used in the CRF
factory.

D5.3
Not

achieved
yet

TC5.3.2.R4

Integration with
middleware:
Simulation solution
should offer
integration with
state-of-the-art
robotics

 WP5

TC5.3.2
Manufacturing
Environment
Simulation

 UPAT Obsolete

87

middleware (e.g.
ROS and ROS2)

TC5.3.2.R5

User control:
Simulation should
allow users to
control all critical
aspects in the
simulation through
dedicated API (e.g.
agents behavior or
sensors).

 WP5

TC5.3.2
Manufacturing
Environment
Simulation

 UPAT Obsolete

TC5.3.2.NFR1

Fast execution -
Software should
offer a fast
execution
simulation for
which graphics are
not required.

Efficiency DoA WP5

TC5.3.2
Manufacturing
Environment
Simulation

MS3 - CPSoSaware
Final architecture -
M36

C(ould) UPAT Run in real time. D5.3
Partially
achieved

TC5.3.2.NFR2

Diagnostic and
Error Handling -
Simulation should
offer diagnostic
and error handling

Reliability DoA WP5

TC5.3.2
Manufacturing
Environment
Simulation

MS3 - CPSoSaware
Final architecture -
M36

C(ould) UPAT

Designing simulation
scenarios in which real
world errors could
happen.

D5.3
Partially
achieved

TC5.3.2.NFR3

Determinism -
Simulation should
ensure
determinism

Reliability DoA WP5

TC5.3.2
Manufacturing
Environment
Simulation

MS3 - CPSoSaware
Final architecture -
M36

C(ould) UPAT
Creating realistic
scenarios.

D5.3
Partially
achieved

TC5.3.2.NFR4

Modular System
Architecture -
Simulation should
have modular
system
architecture

 WP5

TC5.3.2
Manufacturing
Environment
Simulation

 UPAT Obsolete

A total of 232 requirements have been recorded, presenting the following characteristics (Figures 8 to 10).

88

Figure 8 - Functional and non-functional requirement distribution

130

102

Functional and Non-Functional

Functional Non-functional

89

Figure 9 - Fulfilment status of requirements

49

96

47

2

26

12

0

20

40

60

80

100

120

Achieved Partially
achieved

Not achieved
yet

Rejected Obsolete Redundant

Requirement status

90

Figure 10 - Requirement priority distribution

92

79

32

3

0

10

20

30

40

50

60

70

80

90

100

Must Should Could Won't

Requirement priority

91

5 Distribution View

This section demonstrates the logical distribution of components within the system architecture.

5.1 System components per Use Case

Technical Component UC1 – Connected and Autonomous
Vehicles

UC2 - Human-Robot Interaction in
Manufacturing Environment

TC2.2.1 Intra-Communication Sim
Tool

X X

TC2.2.2 pocl-remote X

TC2.3.1 ML Hardware Accelerator IP
Cores

X X

TC2.3.2 Security Accelerators for CPS
security agents/sensors

X

TC2.3.3 Model transformation to
openCL

X

TC2.4.1 Xilinx XRT KPI monitoring X X

TC2.5.1 Modelling Orchestration Tool X

TC3.1.1 Visual Localization X

TC3.1.2 Deep Multimodal Scene
Understanding

X

TC3.1.3 User Behaviour Monitoring X X

TC3.1.4 AI Acceleration X

TC3.2.1 pocl-accel X

TC3.3.1 Multimodal Localization API X

TC3.3.2 PathPlanning API X

TC3.4.1 XR tools for increasing
situational awareness

X X

TC3.5.1 CPS layer Security
sensors/agents

X

TC3.6.1 TCE (openasip.org) soft cores X

TC4.1.1 OpenCL Wrapper for
Hardware IP Cores

X X

TC4.1.2 Profiling X X

TC4.1.3 Optimization Χ Χ

TC4.2.1 Intra-Communication
Manager

X X

TC4.3.1 Security Runtime Monitoring X

92

TC4.4.1 V2X simulator X

TC4.4.3 AV Simulation X

TC4.5.1 Semantic Knowledge Graph X X

TC4.5.2 Semantic Knowledge Graph
Service

X X

TC5.1.1 HLS based SW to HW
Transformation

X X

TC5.3.1 Extended Reality lifelong
learning tools/Interfaces for
integrated CPSoS

X X

TC5.3.2 Manufacturing Environment
Simulation

 X

5.2 Architectural layers

As described in D1.3, the architectural perspective of layers in CPSoSaware consists of the following main
blocks.

Figure 11 - Main architectural blocks

The updated distribution of technical components to these architectural blocks (and appropriate sub-
blocks) is presented in Figures 12 to 14.

93

Figure 12 - CPSoS layer and sub-blocks

94

Figure 13 - CPS/CPHS layer and sub-blocks

95

Figure 14 - Simulation and Training layer and sub-blocks

96

6 Conclusions and Next Steps

This deliverable initially introduced the applied ARCADE platform specification methodology and the
related views. Building upon the progress described in D1.3 and documenting new inputs from all
technical partners, this report presents the latest status of system components, focusing on deployment
and interfacing requirements, and established dependencies. Subsequently, the document presents the
updated list of technical requirements, which has been augmented with new fields that record important
requirement aspects, such as the fulfilment status, target phase and priority. Finally, the distribution view
is demonstrated, incorporating the administering of components in the CPSoSaware use cases and
architectural blocks. Overall, this effort is expected to facilitate the implementation and integration of
modules in the CPSoSaware system, acting as a guide and reference document for involved technical
partners.

Monitoring the status of system requirements and interfaces between technical components periodically
is a crucial task in order to achieve the designed system architecture. In this context, the revised reference
document, along with the outcomes of the realisation view (see subsection 2.1), will be reported in the
final version of this deliverable (D1.5, M36).

97

References

[1] ΙΕΕΕ, “Recommended Practice for Architectural Description for Software-Intensive

Systems,” 2000.

[2] J. A. Khan, I. U. Rehman, Y. H. Khan, . I. J. Khan and S. Rashid, “Comparison of

Requirement Prioritization Techniques to Find Best Prioritization Technique.,” International

Journal of Modern Education & Computer Science, vol. 7, no. 11, 2015.

98

Annex A: CPSoSaware Architecture as PlantUML code

@startuml
scale max 2000 width
left to right direction

title CPSoSAware - Components & Interfaces

/' Packages and components '/

package "CARLA Simulator" as carla {
 component VL [
 ISI - T3.1
 TC3.1.1 Visual Localization
]
 component DMSU [
 ISI - T3.1
 TC3.1.2 Deep Multimodal Scene Understanding
]
 component AIACC [
 ISI - T3.1
 TC3.1.4 AI Acceleration
]
 component MLAPI [
 ISI - T3.1, T3.3
 TC3.3.1 Multimodal Localization API
]
 component PPAPI [
 ISI - T3.1, T3.3
 TC3.3.2 PathPlanning API
]

 DMSU ..> MLAPI : provides input
 AIACC ..> DMSU : accelerates
 MLAPI ..> PPAPI : provides input
}

package "Semantic Components" as semantics {
 component SKG [
 CTL - T4.5
 TC4.5.1 Semantic Knowledge Graph
]
 component SKGS [
 CTL - T4.5
 TC4.5.2 Semantic Knowledge Graph Service
]

 () "SPARQL\nEndpoint" as sparql_endpoint
 SKG -down- sparql_endpoint
 SKGS ..> sparql_endpoint : queries
}

99

component SSA [
 USI - T3.5
 TC3.5.1 CPS Layer Security Sensors/Agents
]
component SRM [
 Atos - T4.3
 TC4.3.1 Security Runtime Monitoring
]
component V2X [
 i2CAT T4.4
 TC4.4.1 V2X simulator
]
component UBM [
 UPAT - T3.1
 TC3.1.3 User Behaviour Monitoring
]
component XRISA [
 UPAT - T3.4
 TC3.4.1 XR Tools for Increasing Situational Awareness
]

package "OpenCL platform" as opencl_platform {
 component PR [
 TAU - T2.2, T3.2
 TC2.2.2 pocl-remote
]
 component MLHAIP [
 UoP/TAU - T2.3
 TC2.3.1 ML Hardware Accelerator IP Cores
]
 component MTTO [
 UoP - T2.3, T3.6, T4.6
 TC2.3.3 Model transformation to OpenCL
]
 component XXKM [
 UoP - T2.4, T3.6, T4.1
 TC2.4.1 Xilinx XRT KPI monitoring
]
 component PACCEL [
 TAU - T3.2
 TC3.2.1 pocl-accel
]
 component TCE [
 TAU - T3.6
 TC3.6.1 TCE (openasip.org) soft cores
]
 component OCLWH [
 TAU - T4.1
 TC4.1.1 OpenCL Wrapper for Hardware IP Cores
]

100

 component PROFILING [
 UoP - T4.1
 TC4.1.2 Profiling
]
 component HLS [
 UoP - T5.1
 TC5.1.1 HLS-based SW to HW transformation
]

 TCE ..> PR
 TCE ..> OCLWH

 () "OpenCL API" as opencl_api
 PACCEL -up- opencl_api
 PR ..> opencl_api : uses
 OCLWH ..> opencl_api : uses
 MLHAIP ..> opencl_api : uses
 MTTO ..> opencl_api : uses
 XXKM ..> opencl_api : uses
 PROFILING ..> opencl_api : uses
 HLS ..> opencl_api : uses
}

component ICSIMT [
 UoP - T2.2
 TC2.2.1 Intra-Communication Sim Tool
]
component ICM [
 UoP - T4.2
 TC4.2.1 Intra-Communication Manager
]
database "Storage" {
 component IBMST [
 IBM
 Data Storage and Transformation Server
]
}
component MOT [
 8BELLS - T2.5
 TC2.5.1 Modeling Orchestration Tool
]
component AVSIM [
 Robotec - T4.4
 TC4.4.3 AV Simulation
]

/' Interfaces '/

queue "RabbitMQ" as skgs_bus {
}
DMSU ..> skgs_bus : publish data

101

DMSU <.. skgs_bus : receive reports
UBM ..> skgs_bus : publish data
SKGS <.. skgs_bus : consume data
SKGS ..> skgs_bus : publish reports

() "REST API" as path_planning_api
PPAPI - path_planning_api
SRM ..> path_planning_api : uses
V2X ..> path_planning_api : uses

() "REST API" as localization_api
MLAPI - localization_api
SRM ..> localization_api : uses
V2X ..> localization_api : uses

() "API (TCP 41000)" as srm_api
SRM - srm_api
SSA ..> srm_api : post sensor data

queue "RabbitMQ/Kafka" as srm_bus {
}
SRM ..> srm_bus : publish alarms

() "API" as xrisa_api
XRISA - xrisa_api
UBM ..> xrisa_api: Facial landmarks (2D coordinates), EAR, PERCLOS, yawings counter
UBM ..> xrisa_api: 3D coordinates of potholes and obstacles, occupancy factor
UBM ..> xrisa_api: Skeleton landmarks (2D coordinates) with confidence rates

() "REST API" as ibmst_api
IBMST -up- ibmst_api
ICSIMT <.. ibmst_api: receives inputs
ICSIMT ..> ibmst_api: stores outputs
ICM <.. ibmst_api: receives inputs
ICM ..> ibmst_api: stores outputs

() "Jenkins Pipeline" as mot_jenkins
MOT -down- mot_jenkins
ICSIMT <.up. mot_jenkins : uses
ICM <.up. mot_jenkins : uses
AVSIM <.up. mot_jenkins : uses
V2X <.up. mot_jenkins : uses
carla <.. mot_jenkins : uses

AIACC ..> UBM : accelerates
AIACC ..> PR : accelerates

@enduml

