

D4.5 – CPSOSAWARE AI FRAMEWORK AND MODEL BASED DESIGN

Authors IBM, ISI, CTL, UoP

Work
Package

WP4 – CPSoSaware System Layer Design and adaptation of dependable
CP(H)SoS

 Abstract

This document contains joint output of Task 4.5 “Cognitive System AI-
assisted maintenance and CPSoS lifecycle Design Continuum Support” and
Task 4.6 “Model-based Design and Redesign of CPSoS Functional blocks
Realization” and describes the CPSoSaware AI framework and model-
based design and re-design methodology. In the context of the AI
framework, we performed multimodal odometer fusion evaluation
studies and presented a vertical AI mechanism based on a data integration
framework with application to automotive and manufacturing use-cases.
Presented model-based design and re-design methodology validated on
the model of driver state monitoring system.

Funded by the Horizon 2020 Framework Programme
of the European Union

Ref. Ares(2022)7833891 - 14/11/2022

1

Deliverable Information

Work Package WP4 – CPSoSaware System Layer Design and adaptation of dependable CP(H)SoS

Task
T4.5 – Cognitive System AI-assisted maintenance and CPSoS lifecycle Design
Continuum Support

T4.6 - Model-based Design and Redesign of CPSoS Functional blocks Realization

Deliverable title CPSOSAWARE AI FRAMEWORK AND MODEL BASED DESIGN

Dissemination Level Public

Status F: Final

Version Number 1.00

Due date 31/08/2022

Project Information

Project start and
duration

01/01/2020 – 31/12/2022, 36 months

Project Coordinator Industrial Systems Institute, ATHENA Research and Innovation Center

26504, Rio-Patras, Greece

Partners 1. ATHINA-EREVNITIKO KENTRO KAINOTOMIAS STIS TECHNOLOGIES TIS
PLIROFORIAS, TON EPIKOINONION KAI TIS GNOSIS (ISI)
* Coordinator

2. FUNDACIO PRIVADA I2CAT, INTERNET I INNOVACIO DIGITAL A CATALUNYA
(I2CAT),

3. IBM ISRAEL - SCIENCE AND TECHNOLOGY LTD (IBM ISRAEL

4. ATOS SPAIN SA (ATOS),

5. PANASONIC AUTOMOTIVE SYSTEMS EUROPE GMBH (PASEU)

6. EIGHT BELLS LTD (8BELLS)

7. UNIVERSITA DELLA SVIZZERA ITALIANA (USI),

8. TAMPEREEN KORKEAKOULUSAATIO SR (TAU)

9. UNIVERSITY OF PELOPONNESE (UoP)

10. CATALINK LIMITED (CATALINK)

11. ROBOTEC.AI SPOLKA Z OGRANICZONA ODPOWIEDZIALNOSCIA (RTC)

12. CENTRO RICERCHE FIAT SCPA (CRF)

13. PANEPISTIMIO PATRON (UPAT)

Website www.cpsosaware.eu

2

Control Sheet

VERSION DATE SUMMARY OF CHANGES AUTHOR

0.1 04/08/2022 Document outline created IBM

0.2 11/08/2022 CTL and ISI Contributions received CTL, ISI

0.3 18/08/2022 CTL and ISI Contributions integrated IBM

0.4 25/08/2022 IBM and UoP Contribution integrated IBM

0.5 01/09/2022 Introduction added IBM

0.0 Document Lost Due to computer failure

0.6 26/10/2022 ToC and Introduction restored IBM

0.61 01/11/2022 CTL and ISI Contributions integrated IBM

0.62 03/11/2022 IBM and UoP Contribution restored IBM

0.63 06/11/2022 ISI Contribution reviewed and errors
fixed

ISI, IBM

0.7 07/11/2022 IBM and UoP Contribution integrated IBM

0.9 08/11/2022 Document finalized IBM

1.0 09/11/2022 Document reviewed and sent to
coordinator

IBM

 NAME

Prepared by IBM

Reviewed by -

Authorised
by IBM

DATE RECIPIENT
08/11/2022 Project Consortium

10/11/2022 European Commission

3

Table of Contents

1 Executive Summary ... 6
1.1 Document structure .. 6
1.2 Definitions and Acronyms ... 7

2 AI Framework .. 9
2.1 Multimodal odometer fusion evaluation studies .. 9

2.1.1 Relocalization scheme .. 12
2.1.2 Implementation using CARLA-ROS framework ... 14
2.1.3 Experimental setup in CARLA-ROS and results .. 14
2.1.4 Evaluation studies with model compression acceleration 19

2.2 Semantic Data integration .. 27
2.2.1 Automotive Pillar .. 29
2.2.2 Manufacturing Pillar ... 35

3 Model-Based design and re-design .. 43
3.1 Model-based design and re-design methodology ... 43
3.2 DSM model .. 44

3.2.1 ERT models developed ... 45
3.2.2 Accuracy of the models .. 45
3.2.3 Latency and power consumption .. 46

3.3 Evaluation of model-based design and re-design methodology 47
3.3.1 System model and input data .. 47
3.3.2 Optimization model .. 50
3.3.3 Results ... 52

4 Conclusions .. 54

4

List of figures

Figure 1: ORB-SLAM architecture 10
Figure 2: LeGO-LOAM architecture 11
Figure 3: Multimodal re-localization scheme 13
Figure 4 Overview of the Carla ROS setup 14
Figure 5: Simulated test case 1: Normal weather conditions 15
Figure 6: Simulated test case 2: Hard rain at noon 16
Figure 7: Simulated test case 3: Hard rain at noon 17
Figure 8: Simulated test case 4: Medium rain at noon 18
Figure 9: Simulated test case 5: Medium rain at noon 19
Figure 10: SqueezeDet architecture. 20
Figure 11: Pointpillars network overview 20
Figure 12: PointPillars BEV Average Precision. The shown acceleration ratios of α = 10, 20, 30,
and 40 on the targeted layers, correspond to a total acceleration of PointPillars by 5.6×, 7.6×,
8.6×, and 9.2×, respectively 21
Figure 13: PV-RCNN BEV Average Precision. The presented acceleration ratios of α = 10, 20,
30, and 40 on the targeted layers, correspond to a total acceleration of the BEV-Backbone block
by 4.5×, 5.5×, 6.0×, and 6.3×, respectively 22
Figure 14: KITTI dataset examples. 22
Figure 15: Fusion pipeline 25
Figure 16: NMS algorithm 25
Figure 17: Detection example in highway scene 27
Figure 18: Overview of the process of semantic data integration. 28
Figure 19: Overview of the system architecture for the automotive pillar 29
Figure 20: Excerpt of the ATE and RPE observations 30
Figure 21: Representation of the sample observations in the KG 34
Figure 22: Performance comparison of LeGO vs DSO for a simulation session. 34
Figure 23: Graph indicating the risk levels during a driving session. 35
Figure 24: Workflow overview. 36
Figure 25: Simulated environment snapshot. 37
Figure 26: Core semantic model for the Manufacturing Use Case 38
Figure 27: Sample instantiations 38
Figure 28: HW-SW partitioning optimization approach 43
Figure 29: Concise model of DSM application - design 48
Figure 30: Concise model of DSM application – scenario table 49
Figure 31: Concise model of DSM application – hardware kernels catalog 49
Figure 32: Concise model of DSM application – optimization goals 50

5

List of tables

Table 1: Algorithm: Adaptive selection of involved landmarks 13
Table 2: KITTI difficulty levels 26
Table 3: Evaluation study results 26
Table 4: Set of rules for calculating the risk level. 35
Table 5: ERT parameters customized for the DSM application 44
Table 6: ERT models used, based on different ERT parameters 45
Table 7: Top-3 models with the highest accuracy in yawning measurement. 46
Table 8: Dynamic power consumption of the HW kernels of the models referenced in Table 7. 46
Table 9: Static power consumption of the HW kernels of the models referenced in Table 7 47
Table 10: Total power dissipation of the PL part 47
Table 11: Estimation of the single frame processing latency 47
Table 12: Normalized latency and power consumption 50
Table 13: Optimization results - Male-Dash Scenario 52
Table 14: Optimization results - Male-Mirror Scenario 52
Table 15: Optimization results - Female-Dash Scenario 52
Table 16: Optimization results - Female-Mirror Scenario 53
Table 17: Optimization results - Night-time Scenario 53

6

1 Executive Summary

This document contains the joint output of Task 4.5 “Cognitive System AI-assisted maintenance and CPSoS lifecycle
Design Continuum Support” and Task 4.6 “Model-based Design and Redesign of CPSoS Functional blocks
Realization”. Task 4.5 deals with the coordination of adaptation mechanisms within and across layers to ensure
system-wide consistency and the incorporation of emerging machine learning techniques to address challenging
situations. In the context of this task, we developed vertical AI schemes for cooperative fusion of different sensor
agents. Sensor cooperation is necessary in order to maximize overall performance of vehicles under various
environmental conditions, where particular sensors may fail or provide inaccurate data. To test our cooperative
sensor fusion approach, we performed multimodal odometer fusion evaluation studies that based on
realizes sensor cooperation approach that is important for improving two major tasks of autonomous
driving: vehicle odometry or SLAM and scene analysis and understanding. Furthermore, we developed a
vertical fusion strategy, which integrates the data from “selfish nodes”, i.e., outputs of individual sensors into a
combined estimation framework, and provides more accurate pose information as well as object detection. The
vertical fusion of selfish sensor agents is extended by a vertical AI mechanism based on a novel semantic data
integration framework for monitoring and safeguarding the ergonomics of human operators during a collaborative
assembly task in an automotive manufacturing environment. This mechanism is a part of CPSoSaware Cognitive
System AI Engine (CSAIE) component that analyses outputs of cooperative sensor measurements and feeds them to
the ontology-based semantic Knowledge Graph (KG) (which defines the set of incentives) through the flexible
semantic data integration framework. CSAIE component’s primary purpose is to provide cognitive control and
management mechanism of the CPSoS functional and non-functional goals as those are captured through the
requirement KPIs of the system. The CSAIE collects inputs of different sensors and performs a broad analysis on the
sensors data in combination with simulated training datasets from the SAT block using an AI engine. These allow us
to collect data on functional and non-functional KPIs of different modules and parts of CPSoS under different
environmental conditions, in order to identify the set of optimal model-based designs, where each particular design
provides an optimal combination of values for the specific set of KPIs under specific environmental condition. The
identification of such designs is performed in Task 4.6.

The main purpose of Task 4.6 is to develop a model-based design and re-design component which selects
models/designs that are optimal with respect to different objectives under different environmental conditions and
triggers re-design with respect to the most important situational objectives of the current environmental conditions.
The choice of optimal models/designs introduces a trade-off between different objectives. To handle this trade-off,
we considered a multi-objective multi-scenario optimization approach that produces a set of optimal designs. Each
design corresponds to one or several scenarios and/or to one or several combinations of situational goals. This allows
triggering the re-design process when environmental conditions change, ensuring that at that target SoS always has
a design that is optimized with respect to situational goals. The re-design phase itself utilizes commissioning and
decommissioning mechanism that developed in the scope of Tasks 4.2/4.3 and described in detail in the
corresponding deliverables. In the context of Task 4.6 we describe model-based design and re-design methodology
and present evaluation of this methodology to the driver monitoring system model (DSM).

1.1 Document structure

This document is structured into eight major sections:

• Section 1 introduces the document, outlining its structure, and identifying terms and acronyms
used across the document.

• Section 2 describes CPSoSaware AI framework and shows multimodal odometer fusion evaluation
study and presents vertical AI mechanism based on a data integration framework with application
to automotive and manufacturing use-cases.

• Section 3 presents CPSoSaware model-based design and re-design methodology and describes
evaluation of this methodology on driver monitoring system model.

7

• Section 4 concludes the document.

1.2 Definitions and Acronyms

Below are listed the most relevant acronyms used in the document and recurring definitions:

Acronym / Term Definition

AI Artifical Intelengences
AOS Average Orientation Similarity
ATE Absolute Trajectory Error
BEV Bird Eye View
BRAM Block Random Access Memory
CASPAR CTL’s proprietary semantic data integration framework
CL Cooperative Localization
CPS Cyber-Physical System
CPSoS Cyber-Physical System of Systems
CR Confidence Rate
CSAIE Cognitive System AI Engine
DEST Deformable Shape Tracking
DMS Driver Monitoring System
DoA Grant Agreement No. 871738 – CPSoSAware. Annex 1 Description of the Action

DSM Driver Monitoring System
DSO Direct Sparse Odometry
DSP Digital Signal Processor
EAR Eye Aspect Ratio
ERT Ensemble of Regression Trees
HLS High Level Synthesis
HW Hardware
ILP Integer Linear Programming
IMU Inertial Measurement Unit
IOU Intersection Over Union
JSON JavaScript Object Notation
KF Kalman Filter
KG Knowledge Graph
KITTI The KITTI Vision Benchmark Suite

A project of Karlsruhe Institute of Technology
and Toyota Technological Institute at Chicago

KPI Key Performance Indicator
LeGO-LOAM Light Weight and Ground Optimization LIDAR Odometry and Mapping
LIDAR Light Detection and Ranging
LOD Linked Open Data

8

MAC Multiply ACcumulate
MAP Maximum A Posteriori
mAP Mean Average Precision
MMCM Mixed-Mode Clock Manager
NMS Non-Maximum Suppression
OF Occupancy Factor
OFE Occupancy Factor Estimation
OPL Optimization Programming Language
PERCLOS Percentage of Eye CloSure
PL Programmable Logic
PS Processing System
RAM Random Access Memory
RDF Resource Description Framework
RMSE Root Mean Square Error
ROS Robot Operating System
RPE Relative Pose Error
RULA Rapid Upper Limb Assessment
SAT Simulation and Training
SGD Stochastic Gradient Descent
SLAM Simultaneous Localization And Mapping
SPARQL Standard Query Language and Protocol for Linked Open Data
SySML Systems Modeling Language
W3C The World Wide Web Consortium
XRT Xilinx Runtime Library

9

2 AI Framework

2.1 Multimodal odometer fusion evaluation studies

This Section is dedicated to the presentation of vertical AI schemes for cooperative fusion of different
sensor agents, i.e., LIDAR and camera, for improving namely two major tasks of autonomous driving:
vehicle odometry or SLAM and scene analysis and understanding. SLAM approaches rely on camera or
LIDAR sensor, which are susceptible to failure in harsh conditions (e.g., extreme weather, featureless
areas, sharp turns, etc.). Sensor cooperation is therefore necessary in order to maximize overall
performance of vehicle and will be realized through Graph Laplacian Processing fusion technique. The
same limitations are also apparent when either of the two sensors is used for scene analysis and
understanding, thus LIDAR and image data fusion becomes imperative. For this case, a geometric
approach is introduced which fuses the output of the two sensors from 3D-to-2D projection. More
specifically, a vertical fusion strategy has been developed for each one of the associated tasks, which
integrates in a combined estimation framework the data from “selfish nodes”, i.e., outputs of individual
sensors, and provides more accurate pose information as well as object detection. In following, we will
shortly review the developed multi-modal re-localization and scene analysis and understanding schemes.
Afterwards, we will describe the details of its deployment in the CARLA-ROS framework.

For the purposes of this deliverable, three state-of-the-art SLAM solutions, i.e., Direct Sparse Odometry
(DSO)1, ORB-SLAM2, and Light Weight and Ground Optimization LIDAR Odometry and Mapping (LeGO-
LOAM)3, have been integrated to CARLA-ROS framework and have been previously analyzed in D3.1

Those three algorithms enabled the design and development of the proposed multimodal re-localization
odometry scheme. The details are discussed below:

DSO is a visual odometry method based on a novel, highly accurate sparse and direct structure and motion
formulation. It exploits a probabilistic model (minimizing a photometric error) with consistent, joint
optimization of all model parameters, including geometry-represented as inverse depth in a reference
frame-and camera motion. This probabilistic model takes noisy measurements 𝑌 as input and computes
an estimator 𝑋 for the unknown, hidden model parameters (3D world model and camera motion),
following a Maximum A Posteriori (MAP) approach. Due to the direct formulation of DSO, it directly uses
the actual sensor values-light received from a certain direction over a certain time period-as
measurements 𝑌 in the probabilistic model. Additionally, one of the main benefits of a direct formulation
is that it does not require a point to be recognizable by itself, thereby allowing for a more finely grained
geometry representation (pixelwise inverse depth). Furthermore, data from across the image can be
sampled—including edges and weak intensity variations generating a more complete model and lending
more robustness in sparsely textured environments. A sparse framework (these methods use and
reconstruct only a selected set of independent points, traditionally corners) has been chosen during the
optimization since the main drawback of adding a geometry prior, as dense methods do, is the

1 J. Engel, V. Koltun and D. Cremers, "Direct Sparse Odometry," in IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 40, no. 3, pp. 611-625, 1 March 2018, doi: 10.1109/TPAMI.2017.2658577.

2 R. Mur-Artal, J. M. M. Montiel and J. D. Tardós, "ORB-SLAM: A Versatile and Accurate Monocular SLAM System," in IEEE
Transactions on Robotics, vol. 31, no. 5, pp. 1147-1163, Oct. 2015, doi: 10.1109/TRO.2015.2463671.

3 T. Shan and B. Englot, "LeGO-LOAM: Lightweight and Ground-Optimized Lidar Odometry and Mapping on Variable Terrain,"
2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2018, pp. 4758-4765, doi:
10.1109/IROS.2018.8594299.

10

introduction of correlations between geometry parameters, which render a statistically consistent, joint
optimization in real time infeasible. Backend optimization is performed in a sliding window, exploiting
Gauss-Newton algorithm, where old camera poses as well as points that leave the field of view of the
camera are marginalized. In contrast to existing approaches, this method further takes full advantage of
photometric camera calibration, including lens attenuation, gamma correction, and known exposure
times. This integrated photometric calibration further increases accuracy and robustness. DSO, apart from
a geometric camera model which comprises the function that projects a 3D point onto the 2D image,
considers also a photometric camera model, which comprises the function that maps real-world energy
received by a pixel on the sensor (irradiance) to the respective intensity value. Two additionally important
modules of DSO are Frame and Point Management. In terms of Frame Management, a window of up to
𝑁! active keyframes (𝑁! 	= 	7 is used) must be kept. Every new frame is initially tracked with respect to
these reference frames (Step 1). It is then either discarded or used to create a new keyframe (Step 2).
Once a new keyframe-and respective new point are created, the total photometric error is optimized.
Afterwards, one or more frames are marginalized (Step 3). As far as the Point Management is concerned,
a fixed number 𝑁" of active points (we use 𝑁" 	= 	2000), equally distributed across space and active
frames, is used in the optimization. As a first step, 𝑁" candidate points are identified in each new keyframe
(Step 1). Candidate points are not immediately added into the optimization, but instead are tracked
individually in subsequent frames, generating a coarse depth value which will serve as initialization (Step
2). When new points need to be added to the optimization, a number of candidate points (from across all
frames in the optimization window) is chosen to be activated, i.e., added into the optimization (Step 3).
Note that DSO only keeps 𝑁" active points across all active frames combined.

ORB-SLAM, is a feature-based monocular SLAM system that operates in real time, in small and large
indoor and outdoor environments. The system is robust to severe motion clutter, allows wide baseline
loop closing and relocalization, and includes fully automatic initialization. Building on excellent algorithms
of recent years, a novel system that uses the same features for all SLAM tasks is designed: tracking,
mapping, relocalization, and loop closing. ORB-SLAM system overview is shown in Figure 1. ORB-SLAM
extends the mapping capability to large scale spaces by dividing the mapping thread into a local mapping
thread and a global mapping thread. The local mapping thread maintains a set of keyframes and
landmarks which the tracking thread is used for camera pose estimation. However, in ORB-SLAM the local
map is bounded in its complexity by only including keyframes that visually overlap with the current
keyframe. During the tracking process correspondences between the input frame and the local map are
computed. As keyframes are added to the local map, starting with the correspondences detected by the
tracking thread, a further correspondence
search is carried out to compute the level of
visual overlap (i.e., shared features)
between other keyframes in the local map.
This information is stored in a co-visibility
graph, where edges are added between
camera nodes that share features. The
weight of an edge corresponds to the
number of shared features between its
associated cameras. During operation the
local mapping thread only considers
keyframes linked to the current reference
frame via edges above a threshold weight. As
the camera explores, new keyframes are
added liberally to the local map to ensure

Figure 1: ORB-SLAM architecture

11

robust tracking, however in order to ensure complexity of the local mapping is bounded, keyframe and
landmark culling strategies are also employed. Taken together, the co-visibility graph and the culling
strategies decouple the complexity of the local mapping process from the scale of the global map. ORB-
SLAM’s large scale mapping capability is provided by a third thread. As each new keyframe is added to the
co-visibility graph, the strongest associated edge is also added to a second essential graph. The strongest
edge connects the new keyframe to the keyframe with the highest number of shared features. The
essential graph therefore contains all of the keyframes from the co-visibility graph, but only a subset of
the edges that form a spanning tree from the first keyframe, and any edges that are added due to loop
closures. Therefore, as new frames are input from the camera, they are first processed by the tracking
thread which execute the following stages: i) ORB feature extraction, ii) Pose estimation and
relocalization, iii) Local map tracking, and iv) Keyframe generation. As new keyframes are inserted the
local mapping thread culls map and keyframes, adds new map points, and performs local bundle
adjustment on the local map. In more detail, it executes the following steps: i) Keyframe insertion, ii) Map-
point culling, iii) New point creation, iv) Local Bundle Adjustment, v) Keyframe culling. Finally, as new
keyframes are generated the loop closing thread attempts to detect loop closures as follows: i) Place
recognition & loop detection, ii) 7DOF (translation, rotation and scale) constraint estimation, iii) Loop
fusion and iv) Pose graph optimization.

LeGO-LOAM is a LIDAR
odometry solution for pose
estimation in complex
environments with variable
terrain. LeGO-LOAM is
lightweight, as real-time pose
estimation and mapping can be
achieved on an embedded
system. Point cloud
segmentation is performed to
discard points that may
represent unreliable features
after ground separation. LeGO-
LOAM is also ground-optimized,
as a two-step optimization for
pose estimation is introduced.
Planar features extracted from
the ground are used to obtain 𝑧
translation, roll and pitch during
the first step. In the second step, the rest of the transformation (𝑥, 𝑦 translation and yaw) is obtained by
matching edge features extracted from the segmented point cloud. The ability to perform loop closures
to correct motion estimation drift is also introduced. Lego-LOAM system overview is shown in Figure 2.
The overall system is divided into five modules. The first, segmentation, takes a single scan’s point cloud
and projects it onto a range image for segmentation. The segmented point cloud is then sent to the
feature extraction module, which determines two types of features: edge and planar. Then, LIDAR
Odometry uses features extracted from the previous module to find the transformation relating
consecutive scans using the two-step Levenberg-Marquardt optimization. The features are further
processed in LIDAR mapping, which registers them to a global point cloud map. At last, the transform
integration module fuses the pose estimation results from lidar odometry and LIDAR mapping and outputs
the final pose estimate. The proposed system seeks improved efficiency and accuracy for ground vehicles,

Figure 2: LeGO-LOAM architecture

12

with respect to the original, generalized LOAM framework. LeGO-LOAM doesn’t perform any backend
optimization as DSO does.

2.1.1 Relocalization scheme

The overview of the proposed multimodal re-localization scheme is shown in Figure 3. At the core of our
approach lies the concept of coupling the pose from one modality (e.g., visual) with the landmarks of the
other modality (e.g., LIDAR) through Graph Laplacian Processing technique, a graph signal processing tool.
The intuition behind our motive was that by effectively combining poses and landmarks from different
modalities, referring however to the same task, a more accurate pose of the vehicle could be produced.
Therefore, as a first step, Graph Laplacian is used to estimate the new pose (𝑥, 𝑦 position and yaw angle)
separately for the two groups of data. Afterwards, using the two estimated poses in the measurement
models, we run two linear Kalman Filters (KFs) assuming the constant velocity motion model. The two KFs
produce also the covariance matrices related to their (Gaussian) estimations. We employ a technique4 of
fusing the two estimated poses in an optimal manner and avoiding any handcrafted weights.

Assume two groups of Gaussians means and covariances: (𝑥#, Σ#), (𝑥$, Σ$). Compute initially matrices:

𝑃! = Σ!"!(Σ!"! + Σ#"!)"!

𝑃# = Σ#"!(Σ!"! + Σ#"!)"!
The optimal mean and covariance will be equal to: 𝑥%"& = 𝑃#𝑥# + 𝑃$𝑥$ and Σ%"& = 𝑃#Σ#𝑃#' + 𝑃$Σ$𝑃$'.
The same approach is followed in our framework using the estimations (mean and covariance) of the two
KFs. The motion model utilized by each KF is described by the following equations:

𝑥$ = 𝑥$"! + 𝑢)%$Δ𝑡

𝑦$ = 𝑦$"! + 𝑢)&$Δ𝑡

𝜃$ = 𝜃$"! + 𝜔/$Δ𝑡
Note that [𝑥&(#, 𝑦&(#, 𝜃&(#] correspond to the previous estimations of individual KF, not the outputs of
fusion level. It is assumed that control parameters of linear velocities 𝑢6)& , 𝑢6*& and yaw rate 𝜔8& are given by
the Inertial Measurement Unit (IMU). In addition, all three motion parameters are degraded by Gaussian
measurement noise:

𝑢)%$ = 𝑢%$ + 𝑛'! 	, 𝑛'! ∼ 𝒩(0, 𝛼𝑢%$)

	𝑢)&$ = 𝑢&$ + 𝑛'" 	, 𝑛'" ∼ 𝒩70, 𝛼𝑢&$ 8

𝜔/$ = 𝜔$ + 𝑛(, 𝑛(∼ 𝒩(0, 𝛽	𝑑𝑒𝑔𝑟𝑒𝑒𝑠	𝑝𝑒𝑟	ℎ𝑜𝑢𝑟),

4 P. Yang, D. Duan, C. Chen, X. Cheng and L. Yang, "Multi-Sensor Multi-Vehicle (MSMV) Localization and Mobility Tracking for
Autonomous Driving," IEEE Transactions on Vehicular Technology, vol. 69, p. 14355–14364, 12 2020

13

Figure 3: Multimodal re-localization scheme

where 𝑢)& , 𝑢*& , 𝜔& are the actual velocities and yaw rate. Velocity noise is modelled so as to simulate the
accumulative or drift error of IMU, while yaw rate measurement noise is known as angle random walk.

In terms of KF’s measurement models, the latter will be feeded by the output of fusion level. To be more
specific and considering the left branch of Figure 3, assume that 2D position and yaw measured by the
Laplacian Processing will be equal to 9𝑥+,"+& , 𝑦+,"+& , 𝜃+,"+& :. The previously estimated state by the fusion
mechanism is equal to 9𝑥!&(#, 𝑦!&(#, 𝜃!&(#:. The measurement vector 𝒛𝒕 shall be comprised of a weighted
version of Laplacian Processing and motion-updated fused outputs:

𝒛𝒕 = C𝑤! ∗ 7𝑥*$"! + 𝑢%$𝛥𝑡8 + 𝑤# ∗ 𝑥+,-+$, 𝑤! ∗ 7𝑦*$"! + 𝑢&$𝛥𝑡8 + 𝑤# ∗ 𝑦+,-+$, 	𝑤. ∗ 7𝜃*$"! + 𝜔$𝛥𝑇8

+ 𝑤/ ∗ 𝜃+,-+$ H	

The weights 𝑤#, 𝑤$, 𝑤., 𝑤/ are used to balance between the motion-updated fusion and Graph Laplacian
Processing.

Furthermore, instead of using the whole number of landmarks detected by visual or LIDAR SLAM, we
choose to discard those who are far away than the corresponding pose. To do so, we measure all the
relevant distances between individual landmarks and pose. Afterwards, we construct the histogram of the
distances and choose the first 𝑛 centroids out of the total bins of the histogram. Then we take the sum of
these 𝑛 centroids and discard the distances which exceed this sum. Finally, the distance threshold is
determined by taking the average distance of the remaining landmarks. The steps for this novel strategy
are summarized in Table 1.

Table 1: Algorithm: Adaptive selection of involved landmarks
For every time instant 𝑡, repeat:
Step 1: Measure distances between individual landmarks and pose

14

Step 2: Construct the histogram of distances and keep the centroids of first 𝑛 out of total 𝑁 bins

Step 3: Take the sum of 𝑛 centroids and discard the landmarks whose distance from pose exceed this
sum

Step 4: Set the dynamic threshold equal to the average of the remaining distances

2.1.2 Implementation using CARLA-ROS framework

The integration to the Carla-ROS framework is the development of the appropriate ROS nodes that will
implement a specific algorithmic behavior. These nodes either contain all the resources necessary for
executing the algorithm or the call an appropriate library. Every ROS node consumes and published data
in the context of the ROS framework, under ROS topics. The type of these messages is either predefined
by the ROS framework or custom types can be created and used. The synchronization of all the nodes is
provided by the ROS framework. Concerning the programming languages, the nodes are either
implemented in Python or in C++.

All the nodes consume data generated in the Carla simulation environment. The data can be either
generated asynchronously (rosbags) or synchronously. In the latter case, the user of the Carla-ROS -bridge
is necessary for the establishment of the bi-directional communication between Carla and the ROS
framework.

Figure 4 Overview of the Carla ROS setup

2.1.3 Experimental setup in CARLA-ROS and results

In this Section, we demonstrate the performance of the proposed scheme using the CARLA simulator and
ROS framework. DSO, ORB-SLAM and LeGO-LOAM algorithms have been employed to generate the pose
of vehicle and landmarks of the map. The evaluation study has been conducted considering the weather
conditions of the specific testing setup, while we drive the car (autonomous pilot has been deactivated).

In the first simulated test case of Figure 5, the output at each one of the four time instances contains the
instantaneous absolute translational error (top left), RMSE of absolute translational error over the entire
trajectory up to the current time instant (bottom left), map generated by LeGO-LOAM (top right) and the
testing setup (bottom right). RMSE of translational error over the entire trajectory is a more indicative
metric of the performance since it demonstrates the overall ability of algorithms to provide localization
information. Due to the sunny weather and normal driving style (avoiding sharp turns or sudden

15

breakings) the proposed scheme is between LeGO-LOAM and DSO. Actually, LeGO-LOAM is shown to be
superior to the other approaches. More specifically, LeGO-LOAM, proposed Fusion and DSO achieved
maximum (instantaneous and overall) translational errors, respectively, equal to: 3.1m and 1.6m, 3.1m
and 3.2m, and 5.2m and 4.4m in Figure 5-(a), 4m and 1.6m, 3.1m and 3.2m, and 5.2m and 4.4m in Figure
5-(b), 4.1m and 1.2m, 2.4m and 2.4m, and 4.2m and 4.4m in Figure 5-(c), and finally 3.1m and 1.6m, 3.1m
and 3.2m, and 5.2m and 4.4m in Figure 5-(d). Although in some cases instantaneous position error with
the proposed Fusion mechanism is smaller than LeGO-LOAM’s, the latter achieved in all cases much more
accurate overall positioning error, demonstrating higher localization ability. Therefore, we conclude that
in normal driving conditions, LeGO-LOAM is more credible for the SLAM task.

(a) (b)

(c) (d)
Figure 5: Simulated test case 1: Normal weather conditions

In the second simulated test case of Figure 6, we see that the performance of LeGO-LOAM has been
degraded as a result of changing weather conditions to hard rain at noon, along with sharp turns during
driving. Additionally, instead of DSO we employed ORB-SLAM (with ORB-SLAM3 implementation edition).
More specifically, LeGO-LOAM, proposed Fusion and ORB-SLAM achieved maximum (instantaneous and
overall) translational errors, respectively, equal to: 7.5m and 6.3m, 7.5m and 7.8m, and 3.5m and 3.2m in
Figure 6-(a), 7.5m and 6.3m, 7.5m and 7.8m, and 3.8m and 3.3m in Figure 6-(b), 6.5m and 4.5m, 2.1m and
3.2m, and 3.7m and 3.2m in Figure 6-(c), and finally 6.1m and 4m, 2.1m and 2.2m, and 3.2m and 3.1m in
Figure 6-(d). From Figure 6-(c) and (d), we see that the proposed Fusion reduced significantly not only the
maximum errors, but constantly achieved lower translational errors than the other schemes. Therefore,
when harsh conditions exist and performance of original SLAM algorithms is degraded, the proposed
mechanism is able to significantly reduce position error.

16

(a) (b)

(c) (d)
Figure 6: Simulated test case 2: Hard rain at noon

In the third simulated test case of Figure 7, we see that the performance of Fusion is now better than the
other algorithms is all four cases, especially for the overall translational error of trajectory. Moreover, in
Figure 7-(d), when ORB-SLAM and LeGO-LOAM are unable to produce accurate localization information
due to sharp turn, proposed scheme is able to keep instantaneous error below 7.5m. More specifically,
LeGO-LOAM, proposed Fusion and ORB-SLAM achieved maximum (instantaneous and overall)
translational errors, respectively, equal to: 2.4m and 1.75m, 1m and 1m, and 2.4m and 2.5m in Figure 7-
(a), 4.4m and 2.5m, 1.8m and 1m, and 5.8m and 3.5m in Figure 7-(b), 4.4m and 2.25m, 1.8m and 1m, and
5.8m and 3.5m in Figure 7-(c), and finally 20m and 7.5m, 6.25m and 2.5m, and 12.5m and 4.4m in Figure
6-(d). Therefore, with hard rain at noon, the quality of visual data is degraded and as a matter of fact the
accuracy of SLAM algorithms is reduced. In those cases, the proposed Fusion mechanism is able to
increase positioning accuracy.

17

(a) (b)

(c) (d)
Figure 7: Simulated test case 3: Hard rain at noon

In the following scenarios, the configuration of weather has changed to medium weather at noon. Once
again, we see from Figure 8 that the Fusion mechanism achieved the greatest accuracy, mainly in terms
of overall translational error. More specifically, LeGO-LOAM, proposed Fusion and ORB-SLAM achieved
maximum (instantaneous and overall) translational errors, respectively, equal to: 8.6m and 5.3m, 2m and
1.6m, and 5.2m and 5.4m in Figure 8-(a), 7.8m and 3m, 4.5m and 1.75m, and 2.8m and 3m in Figure 8-(b),
3m and 2.4m, 1.8m and 1.6m, and 4.2m and 2.3m in Figure 8-(c), and finally 7m and 1.8m, 2.4m and 1.8m,
and 6m and 2.5m in Figure 8-(d).

18

(a) (b)

(c) (d)
Figure 8: Simulated test case 4: Medium rain at noon

In the final testing scenario of Figure 9, the weather conditions remain as previously: medium rain at noon.
We see that the performances of LeGO-LOAM and ORB-SLAM are very close, and in some cases the
instantaneous position error of LeGO-LOAM exceeds that of ORB-SLAM. Fusion mechanism is able to
achieve greatest accuracy in terms of overall translational error in three out of the four-time instances.
More specifically, LeGO-LOAM, proposed Fusion and ORB-SLAM achieved maximum (instantaneous and
overall) translational errors, respectively, equal to: 4.1m and 2.2m, 1.5m and 1.6m, and 2m and 2m in
Figure 9-(a), 6m and 2.4m, 2.5m and 1.6m, and 2m and 2m in Figure 9-(b), 6.5m and 2m, 1.5m and 1.65m,
and 2m and 1.35m in Figure 9-(c), and finally 4.9m and 1.7m, 1 m and 1.35m, and 3.4m and 1.6m in Figure
9-(d).

19

(a) (b)

(c) (d)
Figure 9: Simulated test case 5: Medium rain at noon

The extracted videos can be found here:

https://drive.google.com/drive/folders/10scWjwdJtUYlBf9MO09QCG0tyZvvg13m?usp=sharing

2.1.4 Evaluation studies with model compression acceleration

In order to evaluate multimodal fusion, we utilize SqueezeDet as a solution for 2D object detection and
pointpillar as a solution for 3D object detection. The evaluation is also performed using model
compression and acceleration techniques also presented in D3.1

SqueezeDet is a fully convolutional detection networks presented by Wu et al.5, consisting of a feature-
extraction part that extracts high dimensional feature maps for the input image, and ConvDet, a

5 B. Wu, F. Iandola, P. H. Jin, and K. Keutzer, “SqueezeDet: Unified, Small, Low Power Fully Convolutional Neural Networks for
Real-Time Object Detection for Autonomous Driving,” IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. Work., vol. 2017-
July, pp. 446–454, 2017.

20

convolutional layer to locate objects and predict their class. For the derivation of the final detection, the
output is filtered based on a confidence index also extracted by the ConvDet layer.

Figure 10 presents the overall architecture of the deep networks, the convolutional volume kernel shapes
and the feature tensor shapes.

As it can be observed from Figure 10, the feature-extraction (convolutional) part of SqueezeDet is based
on SqueezeNet which is a fully convolutional neural network that employs a special architecture that
drastically reduces its size while still remaining within the state-of-the-art performance territory. Its
building block is the "fire" module that consists of a "squeeze" 1×1 convolutional layer with the purpose
of reducing the number of input channels, followed by 1×1 and 3×3 "expand" convolutional layers that
are connected in parallel to the "squeezed" output. SqueezeNet consists of 8 such modules connected in
series.

Figure 10: SqueezeDet architecture.

3D object detection from LIDAR point clouds is mainly a data-driven task due to the lack of apparent
structure in the data. Pointpillars 6 proposed a novel encoder that utilizes PointNets to learn a
representation of point clouds organized in vertical columns (pillars) presenting an accuracy of 74.31% in
the same category.

Figure 11: Pointpillars network overview

6 A. H. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang, and O. Beijbom, “Pointpillars: Fast encoders for object detection from point
clouds,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., vol. 2019-June, pp. 12689–12697, 2019.

21

The architecture of PointPillars consists of three stages as depicted in Figure 11. The first stage transforms
the point cloud into a pseudo-image. By grouping the points of the cloud into vertical columns, called
pillars, that are positioned based on a partition of the plane, this stage summarizes the information of the
points per pillar into 1D vectors. These vectors are rearranged appropriately to construct the pseudo-
image that will feed the next stage. The second stage consists of a feature extraction backbone network
that provides a high-level representation. This representation is subsequently processed by the third stage
which is the adopted object detector, producing 3D bounding boxes and confidence scores for the classes
of interest. In terms of computational complexity, the backbone network of the second stage, consisting
of a number of 2D convolutions and 2D transpose convolutions, requires more than of the involved
operations and, thus, we will focus on this stage in the following for its acceleration.

2.1.4.1 Dataset

Both networks for 2D and 3D analysis were trained with the KITTI 3D object detection benchmark
consisting of 7481 training images and 7518 test images as well as the corresponding point clouds,
comprising a total of 80.256 labelled objects. In our study, three classes are mainly examined, cyclists,
pedestrians and cars annotated with bounding boxes containing the objects in the 3D scene. 3716
annotated Velodyne point cloud scenes were used for training and 3769 annotated Velodyne point cloud
scenes were used for testing and validation. For the deployment and retraining of PointPillars, the
OpenPCDet framework7 was employed. For the initial evaluation, pre-trained instances were used, while
for the retraining, the Adam optimizer was employed with learning rate 𝑙0 = 0.003, weight decay rate
𝐷1 = 10($ and a batch size 𝐵 = 4. Training took place in an NVIDIA Geforce RTX 2080 with 16GB RAM
and compute capability 7.5. Furthermore, for the Pointpillars network the detection accuracy was
evaluated on NVIDIA Jetson TX2, while for the PV-RCNN network, due to model size, the detection
accuracy was evaluated on the NVIDIA Geforce RTX 2080. The following two figures present the average
precision for Car, Pedestian and Cyclist classes for PoinPillar and PV-RCNN respectively.

Figure 12: PointPillars BEV Average Precision. The shown acceleration ratios of α = 10, 20, 30, and 40 on the
targeted layers, correspond to a total acceleration of PointPillars by 5.6×, 7.6×, 8.6×, and 9.2×, respectively

7 O. D. Team, “OpenPCDet: An Open-source Toolbox for 3D Object Detection from Point Clouds.” 2020.

22

Figure 13: PV-RCNN BEV Average Precision. The presented acceleration ratios of α = 10, 20, 30, and 40 on the
targeted layers, correspond to a total acceleration of the BEV-Backbone block by 4.5×, 5.5×, 6.0×, and 6.3×,
respectively

Figure 14: KITTI dataset examples.

Moreover, a data augmentation scheme was adopted, according to which the bounding boxes drift by
𝑘) ∗ 150 and 𝑘* ∗ 150 pixels across the 𝑥-axis and the 𝑦-axis, respectively, where 𝑘) , 𝑘* ∼ 𝑈(0,1). A
50% probability is also assumed to flip an object. For the training of the SqueezeDet architecture,
Stochastic Gradient Descent (SGD) was employed with the following values for the hyperparameters
(determined via experimentation); batch size 𝐵 = 8, learning rate 𝐿𝑅 = 10(/, with a weight decay rate
𝐷1 = 10(/, a learning rate decay rate of 𝐷23 = 2 ∗ 𝐿𝑅/𝑁4, number of steps 𝑁5 = 3 × 𝑁&0 and a dropout

23

rate of 50%, over a total of 𝑁4 = 300 epochs. Training and testing took place in an NVIDIA GeForce GTX
1080 graphics card with 8GB VRAM and compute capability 6.1 in a Intel(R) Core(TM) i7-4790 CPU @
3.60Hz based system with 32GB of RAM.

In all cases, training took place with a data augmentation scheme where the bounding boxes drift by pixels
across the x-axis and pixels across the y-axis, where. A probability is also assumed to flip the object. For
each detection, the Intersection Over Union (IOU) score is computed as the ratio of area of intersection
to the area of union between the predicted and ground-truth bounding boxes. A true positive occurs when
IOU and the predicted class is the same as the ground-truth class. A false positive occurs when IOU or a
different class is detected, meaning that unmatched bounding boxes are taken as false positives for a
given class. Precision, recall and mean average precision (mAP) are subsequently calculated8.

2.1.4.2 Metrics

For each detection, the Intersection Over Union (IOU) score is computed as the ratio of area of
intersection to the area of union between the predicted and ground-truth bounding boxes. A true positive
occurs when IOU> 0.5 and the predicted class is the same as the ground-truth class. A false positive
occurs when IOU< 0.5 or a different class is detected, meaning that unmatched bounding boxes are taken
as false positives for a given class.

The official KITTI evaluation detection metrics include bird eye view (BEV), 3D, 2D, and average orientation
similarity (AOS). The 2D detection is done in the image plane and average orientation similarity assesses
the average orientation (measured in BEV) similarity for 2D detections. The KITTI dataset is categorised
into easy, moderate, and hard difficulties, and the official KITTI leaderboard is ranked by performance on
moderate. For the sake of self-completeness, easy difficulty refers to a fully visible object with a minimum
bounding height box of 40px and max truncation of 15%, moderate difficulty refers to a partially occluded
object with a minimum bounding box height of 25px and max truncation of 30% and hard difficulty refers
to a difficult to see an object with a minimum bounding box height of 40px and max truncation of 50%.
Each 3D ground truth detection box is assigned to one out of three difficulty classes (easy, moderate,
hard), and the used 40-point Interpolated Average Precision metric is separately computed on each
difficulty class. It formulated the shape of the Precision/Recall curve as

 AP|0 =
!
|0|
∑2∈0 𝜌45$62-(𝑟) (3)

 averaging the precision values provided by 𝜌67&40"(𝑟)9. In our setting, we employ forty equally spaced
recall levels,

 𝑅/7 = {1/40,2/40,3/40,… ,1} (4)
 The interpolation function is defined as

 𝜌45$62-(𝑟) = max
28:28:2

𝜌(𝑟′) (5)
 where 𝜌(𝑟) gives the precision at recall 𝑟, meaning that instead of averaging over the actually observed
precision values per point 𝑟, the maximum precision at recall value greater or equal than 𝑟 is taken.

8 D. M. W. Powers, “Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation,” pp.
37–63, 2020.
9 A. Simonelli, S. R. Bulo, L. Porzi, M. L ́opez-Antequera, and P. Kontschieder, “Disentangling monocular 3d object detection,” in
Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 1991–1999

24

2.1.4.3 Acceleration

We apply the detection models in a "full-model" acceleration scenario. It involves accelerating multiple
(or all) convolutional layers of the original models and measuring the achieved performance of the
accelerated networks.

It is noted, here, that, although full-range acceleration depends heavily on the performance of the
technique used for the acceleration of each layer, it also involves experimentation over the strategy used
for accelerating the layers and the involved fine-tuning (re-training) of the accelerated model. Here, we
follow a stage-wise acceleration approach10 with each stage involving the acceleration (and fixing) of one
or more layers of the network, and, subsequently, fine-tuning (i.e., re-training) the remaining original
layers. The starting point for each stage is the accelerated and fine-tuned version of the previous stage.
The process begins with the original network and it is repeated until all target layers are accelerated. For
fine-tuning and performance assessment, we use the training and validation datasets from KITTI, as
previously explained. Integrating the accelerated version corresponds to the utilization of weights that
have been accordingly processed with the proposed in D3.1 weight sharing approaches.

In our experiments, we apply the VQ and DL weight-sharing techniques to the PontPillars model, targeting
the convolutional layers, and measuring the performance drop induced by the acceleration, compared to
the original networks. The reported acceleration ratios are defined as the ratio of the original to the
accelerated computational complexities, measured by the number of multiply-accumulate (MAC)
operations.

PointPillars is a fully convolutional network with its feature-extraction part (both 2D and transposed
convolution operators) being responsible for 97.7% of the total MAC operations required. In total
Pointpillars network encompasses 4.835 × 108 parameters and require 63.835 × 109 MACs. For a good
balance between acceleration and performance drop, we targeted the 2D convolutional layers of
PointPillars (consuming approximately 47% of the total MACs), as well as the 4 × 4 transposed
convolutional layer of the network (responsible for 44.4% of the total MACs), depicted with the red blocks
in Fig. 2.3(a). Acceleration was performed in 16 acceleration stages with each stage involving the
quantization of a particular layer, followed by fine-tuning. Using acceleration ratios of 𝛼 = 10, 20, 30, and
40 on the targeted layers, lead to a reduction of the total required MACs by 82%, 86%, 88%, and 89%,
or equivalently, to total model acceleration of PointPillars by 5.6 ×, 7.6 ×, 8.6 ×, and 9.2 ×, respectively.

2.1.4.4 Fusion

A late fusion strategy takes place combining 2D driven detections and 3D driven detections. Initially, 3D
bounding boxes are projected upon the 2D plane and converted to 2D bounding boxes. To fuse 2D and
3D measurements a non-maximal suppression11 driven approach takes place redefining the bounding
boxes on the 2D space. Afterwards, to define vehicle range measurements 2D projects are matched to 3D
points of the point cloud. Subsequently, each 3D point of the point cloud [xi, yi, zi] is projected upon the
3D image.

The 3D bounding box is described by its center 𝑇 = [𝑡) , 𝑡* , 𝑡:]' , dimensions 𝐷 = [𝑑) , 𝑑* , 𝑑:] , and
orientation 𝑅(𝜃, 𝜙, 𝛼) where 𝜃 is the azimuth, 𝜙 is the elevation and 𝛼 is the roll angles. Given the pose

10 J. Cheng, J. Wu, C. Leng, Y. Wang, and Q. Hu, “Quantized cnn: A unified approach to accelerate and compress convolutional
networks,”IEEE Transactions on Neural Networks and Learning Systems, vol. 29,no. 10, pp. 4730–4743, 2018.

11 Rothe, Rasmus, Matthieu Guillaumin, and Luc Van Gool. "Non-maximum suppression for object detection by passing
messages between windows." Asian conference on computer vision. Springer, Cham, 2014.

25

of the object in the camera coordinate frame (𝑅, 𝑇) ∈ 𝑆𝐸(3) and the camera intrinsics matrix 𝑅34;&
(=) , the

transformation matrix 𝑃34;&
(6) the projection of a 3D point 𝑋% = [𝑋, 𝑌, 𝑍, 1]' in the object's coordinate

frame into the image 𝑥 = [𝑥, 𝑦, 1]' is:

𝑥	 = 		 𝑃06;$
(4) ∗ 	𝑅06;$

(7) 	 ∗ 	𝑋

Figure 15: Fusion pipeline

The popular NMS algorithm is sequential in nature. At each iteration 𝑖, it selects the top scoring proposal
𝑃(𝑖) from the set 𝒮 and removes all proposals in 𝒮 − 𝑃(𝑖) which have an overlap 𝑜 greater than a
threshold 𝑡. The complexity of each iteration is linear in the size of set 𝒮.

Figure 16: NMS algorithm

26

2.1.4.5 Results

This experiment aims to demonstrate the effectiveness of the multimodal fusion. Table 3 presents the
average precision metrics for class car for image and LIDAR modalities and the fusion of both. The
comparison is performed between the original networks and their accelerated versions either with the
Vector Quantization or the Dictionary Learning based methods. All methods were compared with the Kitti
Tracking dataset route12 number #8. Furthermore, three difficulty levels are taken into account, namely
Easy, Hard and Moderate. Their characteristics are presented in the Table 2

Table 2: KITTI difficulty levels

As Table 3 reveals both image and LIDAR detectors and their fusion exhibit equivalent accuracies.
However, applying the VQ acceleration strategy for acceleration factor equal to 10 significantly
deteriorates the image detector with an accuracy drop from 76% to 63% for VQ and 73% for DL. For the
same acceleration level the LIDAR detector seems not to be affected. Yet the fusion of both modalities
maintains the average precision for accelerated networks nearly at the same level as the original network.

Table 3: Evaluation study results

#Route
ID

Object
Difficulty

Image LIDAR Fusion

Original VQ10 DL10 Original VQ10 DL10 Original VQ10 DL10

0008 Easy 0.710 0.656 0.720 0.744 0.747 0.706 0.747 0.747 0.708

Moderate 0.769 0.637 0.734 0.766 0.765 0.756 0.763 0.762 0.756

Hard 0.748 0.616 0.681 0.767 0.761 0.758 0.763 0.751 0.757

The following figure presents a visual example of original and accelerated versions of image lidar and
fusion driven car detections in a highway scene. The red boxes correspond to image detection, green 3D
boxes to lidar detection, blue boxes to fusion of modalities and yellow boxes to groundtruth data. Even
though the car on the left is clearly visible , the image based object detector fails in both cases and the
reason could be that part of the car is hidden by the median strip. However the car is detected by LIDAR
based detector and the fusion of modalities method.

12 Geiger, A., Lenz, P., Stiller, C., & Urtasun , R. (n.d.). The Kitti Vision Benchmark Suite : Tracking Dataset. The Kitti Vision
Benchmark Suite. Retrieved August 11, 2022, from http://www.cvlibs.net/datasets/kitti/eval_tracking.php

27

Figure 17: Detection example in highway scene

2.2 Semantic Data integration

This Section capitalizes on the previous approach of “early” fusion of selfish sensor agents and presents a
vertical AI mechanism based on a novel semantic data integration framework for monitoring and
safeguarding the ergonomics of human operators during a collaborative assembly task in an automotive
manufacturing environment. The analysis outputs, which are not the raw sensor measurements as
previously, are fed to an ontology-based semantic Knowledge Graph (KG) (which defines the set of
incentives) through the flexible semantic data integration framework of CASPAR, already being deployed
in various domains.

Semantic data integration (also known as “semantic data fusion”) is the process of blending data from
diverse and possibly heterogeneous sources, by employing a data-centric architecture built upon a
semantic model13. The latter is typically based on RDF (Resource Description Framework)14, a W3C
standard for knowledge representation on the Web that represents resources as subject-predicate-object
triples.

RDF-based semantic models are called ontologies and are stored in triplestores, which are special
databases for the storage and retrieval of RDF triples. The ability to easily import and harmonise

13 https://en.wikipedia.org/wiki/Semantic_integration
14 https://www.w3.org/RDF/

28

heterogeneous data from multiple sources and interlink it as RDF statements into an RDF triplestore is
essential for many knowledge management solutions running “on-top” of the semantic model. In
addition, being the backbone of semantic technologies, RDF enables the inference of new facts from the
existing data as well as the enrichment of the available knowledge by accessing Linked Open Data (LOD)
resources available on the Web. Figure 18 gives an overview of the process of semantic integration. The
semantic model is typically initially empty and contains only the schema of the application domain,
namely, definitions of the basic concepts and interrelationships.

Figure 18: Overview of the process of semantic data integration.

The input to the semantic model can be either raw data (e.g., sensor measurements) or the result from
analysing raw data (e.g., objects detected by a computer vision module). The result of the semantic
integration process is a semantic knowledge graph (KG), i.e., a semantic model populated with the input
data that delivers a unified view of the available information to the end-user. And various applications can
run on-top of the semantic model, like, e.g., analytics, predictions, and rule-based decision support.

Within the context of CPSoSaware T4.5, we deployed a semantic data integration framework for ingesting
outputs from other analysis components into a uniform semantic model. We investigated two application
domains, coinciding with the two use cases in the project: automotive and manufacturing. For each case,
we created an initially empty semantic model and a respective semantic data integration infrastructure
for populating the model with instance data from other CPSoSaware components. CTL’s proprietary
semantic data integration framework, called CASPAR15, was used in both use cases, and was extended
accordingly, in order to satisfy the respective needs of each domain. Moreover, for both use cases, we
developed domain ontologies based on the SSN/SOSA16 W3C recommendation for representing sensors,
observations, samples and actuations. The following subsections present in more detail the work
conducted in each of the two use cases.

15 https://caspar.catalink.eu/
16 W3C Recommendation 19 October 2017: http://www.w3.org/ns/sosa/

29

2.2.1 Automotive Pillar

Within the automotive pillar, we focused on monitoring (a) the system health, and, (b) the driver’s state
during a driving session, and, thus, deployed the system displayed in Figure 19.

Figure 19: Overview of the system architecture for the automotive pillar

Adopting the microservice methodology17, we defined a set of independent, replicable services that
collaboratively fulfil the system’s functionality. For the communications among services, we deployed
RabbitMQ18, a popular open-source message broker that is scalable and industry-ready.

The system components in the monitoring layer periodically collect and analyse data related to the driver,
the vehicle and its surroundings. The following monitoring components are currently integrated:

Odometry Algorithms (Direct Sparse Odometry - DSO19, LeGO-LOAM20, Cooperative Localization - CL),
calculating the Absolute Trajectory Error (ATE) and the Relative Pose Error (RPE).

Driver Monitoring System (DMS) capturing frontal facial images of the driver to assess fatigue levels based
on the activity of the eyes. The driver’s drowsiness is measured based on two metrics, the Eye Aspect
Ratio (EAR)21 and the PERcentage of Eye CLOSure (PERCLOS)22.

Occupancy Factor (OF), which is an empirical metric, extracted by analysing the point cloud of the scene
that has been acquired by the LiDAR device. It indicates how “clear and open” the road is beyond the
driver’s field of view.

17 S. Newman, “Building microservices: designing fine-grained systems” O'Reilly Media Inc, 2015.
18 https://www.rabbitmq.com/
19 J. Engel, V. Koltun, and D. Cremers, “Direct sparse odometry” IEEE transactions on pattern analysis and machine intelligence,
vol. 40(3), pp. 611-625, 2017.
20 T. Shan and B. Englot, “Lego-loam: Lightweight and ground-optimized LiDAR odometry and mapping on variable terrain” In
2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE Press, Oct. 2018, pp. 4758-4765.
21 F. You, X. Li, Y. Gong, H. Wang, and H. Li, “A real-time driving drowsiness detection algorithm with individual differences
consideration” IEEE Access, vol 7, pp. 179396-179408, 2019.
22 D. F. Dinges and R. Grace, “PERCLOS: A valid psychophysiological measure of alertness as assessed by psychomotor vigilance”
US Department of Transportation, Federal Highway Administration, Publication Number FHWA-MCRT-98-006, 1998.

30

The modularity provided by the microservice approach, coupled with the straightforward system design,
enables the integration of additional third-party data sources (e.g., weather or traffic condition reports)
with minimum effort.

The outputs and observations produced by the monitoring layer are communicated to the semantic data
fusion layer via a dedicated RabbitMQ exchange. At this stage, they are mapped to ontology concepts,
resulting in a unified KG, which is instantiated in an RDF triplestore by the CASPAR component.

The following subsections present the two scenarios we investigated within the context of the Automotive
Use Case, which were also presented in more detail at the 15th Int. Conf. on Advances in Semantic
Processing (SEMAPRO 2021)23.

2.2.1.1 Scenario #1: Evaluating the Robustness of Odometry Algorithms

In the first scenario we rely on an end-to-end testing framework, based on the CARLA open-source urban
driving simulator24 , for generating synthetic sensory data and evaluating the three aforementioned
odometry algorithms against different weather and lighting conditions. Each algorithm uses a different
modality and our purpose is to study the effect of the changing conditions on the efficiency of each
algorithm. Based on the architecture described above, ATE and RPE measurements are sent via the
message bus to the CASPAR semantic data fusion framework and are ingested into the KG. Indicatively,
1226 observations were submitted for a driving simulation of 126 seconds. Figure 20 displays an excerpt
of the observations.

Figure 20: Excerpt of the ATE and RPE observations

CASPAR converts the inputs into RDF-compatible representations via the use of user-defined mappings,
which associate input data fields to semantic entities (concepts, relationships, etc.). The following listing
displays the mapping for converting the JSON excerpt in Figure 20 into SPARQL queries that populate the
semantic model with the appropriate instance data.

{
 "templates": [

23 Kontopoulos, E. et al.: An Extensible Semantic Data Fusion Framework for Auton-omous Vehicles. In: 15th Int. Conf. on
Advances in Semantic Processing (SEMAPRO 2021), pp. 5-11. IARIA (2021).
24 A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “CARLA: An open urban driving simulator” In Conference on robot
learning (PMLR), Oct. 2017, pp. 1-16.

31

 {
 "prefixes": [
 {
 "prefix": "rdf",
 "namespace": "http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 },
 {
 "prefix": "rdfs",
 "namespace": "http://www.w3.org/2000/01/rdf-schema#"
 },
 {
 "prefix": "xsd",
 "namespace": "http://www.w3.org/2001/XMLSchema#"
 },
 {
 "prefix": "owl",
 "namespace": "http://www.w3.org/2002/07/owl#"
 },
 {
 "prefix": "sosa",
 "namespace": "http://www.w3.org/ns/sosa/"
 },
 {
 "prefix": "cpsos",
 "namespace": "http://www.example.com/cpsosaware#"
 }
],
 "individuals": [
 {
 "path": "observations.[*]",
 "namespace": "http://www.example.com/cpsosaware#",
 "classes": [
 "sosa:Observation"
],
 "properties": [
 {
 "predicates": [
 "sosa:observedProperty"
],
 "object": {
 "path": "observations.[*].property",
 }
 },
 {
 "predicates": [
 "sosa:madeBySensor"
],
 "object": {
 "path": "observations.[*].source",
 }
 },
 {
 "predicates": [
 "sosa:hasResultTime"

32

],
 "object": {
 "path": "observations.[*].timestamp",
 "datatype": "xsd:dateTime"
 }
 },
 {
 "predicates": [
 "sosa:hasSimpleResult"
],
 "object": {
 "path": "observations.[*].result",
 "datatype": "xsd:decimal"
 }
 }
],
 "update_on": []
 },
 {
 "path": "observations.[*].property",
 "namespace": "http://www.example.com/cpsosaware#",
 "classes": [
 "sosa:ObservableProperty"
],
 "properties": [
 {
 "predicates": [
 "rdfs:label"
],
 "object": {
 "path": "observations.[*].property"
 }
 }
],
 "update_on": [
 {
 "predicates": ["rdfs:label"],
 "object": {
 "path": "observations.[*].property"
 }
 }
]
 },
 {
 "path": "observations.[*].source",
 "namespace": "http://www.example.com/cpsosaware#",
 "classes": [
 "sosa:Sensor"
],
 "properties": [
 {
 "predicates": [
 "rdfs:label"
],

33

 "object": {
 "path": "observations.[*].source"
 }
 }
],
 "update_on": [
 {
 "predicates": ["rdfs:label"],
 "object": {
 "path": "observations.[*].source"
 }
 }
]
 }
]
 }
]
}

The process of ontology population corresponds to the generation of new individuals (nodes) and
properties (edges) in the KG. In a nutshell, mappings are JSON-structured files composed of definitions of
templates, individuals and properties:

A template serves as the mechanism for focusing on specific parts of the input.

A template contains a set of individuals, which declare the nodes that need to be created or updated in
the KG. From the perspective of using an ontology as the KG schema, an individual is an instance of one
or more classes.

A property indicates a desired edge that needs to be created in the KG, connecting a node with another
node or with a literal value. In ontology terms, a property may correspond to an object property (i.e.,
relating two instances with each other) or a datatype property (i.e., relating an instance to a literal value).
Properties in mappings are defined by a set of predicates, meaning the relationship types of the ontology,
and objects, which indicate the value that will be given to the property. Therefore, objects, which are also
declared as JSON paths, can either point to literal values in the input JSON or to other individuals.

The optional update_on field allows associating newly arrived knowledge with nodes already existing in
the KG.

Figure 21 illustrates the representation of the sample observations from Figure 20 in Graffoo format25
fused inside the KG, after the process of ontology population is completed by CASPAR.

25 https://essepuntato.it/graffoo/

34

Figure 21: Representation of the sample observations in the KG

After the population of the KG is complete, useful insights regarding the performance of the algorithms
can be extracted. Figure 22 displays such an example, where the LiDAR-based odometry algorithm (LeGO-
LOAM) presents better results with regards to RPE and seems to be more robust, constituting thus a better
candidate in conditions similar to the specific driving simulation session.

Figure 22: Performance comparison of LeGO vs DSO for a simulation session.

2.2.1.2 Scenario #2: Calculating Risk Levels during a Driving Session

In the second scenario, our objective is to inform the driver about potential risks during a driving session.
We focus on two factors: The driver’s drowsiness and the free available space of the road. For this
purpose, two components have been developed: (a) the Driver Monitoring System (DMS) component,
and (b) the Occupancy Factor Estimation (OFE) component. For the evaluation of our implementation, we
integrated the DMS with CARLA, whose spectacularly photorealistic graphics provide an immersive driving
experience. The simulator provides the flexibility to design a variety of driving scenarios under different
states of driver’s drowsiness and different conditions of the road (e.g., the state of the traffic), in a safe

35

environment for the operator who tests the implementation. The setup of the integration uses the
Logitech G29 steering wheel for enhancing the driving sense, as well as a static web camera that captures
the face of the driver in real-time.

Similar to the previous scenario, the DMS and OFE modules submit their observations, namely the
PERCLOS and OF measurements, to CASPAR via RabbitMQ. However, an upgrade compared to scenario
#1 entails a set of rules for calculating the risk levels during the simulated driving session (see Table 4).

Table 4: Set of rules for calculating the risk level.

 PERCLOS < 0.25 PERCLOS >= 0.25 & <0.7 PERCLOS >= 0.7

OF > 280 Low risk (1) Be aware (2) High risk (3)

OF <= 280 & >200 Low risk (1) Be aware (2) High risk (3)

OF <= 200 Be aware (2) High risk (3) High risk (3)

Risk level 1 corresponds to a “low risk” driving situation, where the driver is focused and drives carefully
in a full open-eyed state (without any observed drowsiness). Moreover, the road is free from other
vehicles, thus providing an unobstructed area for driving. On the other hand, risk level 3 corresponds to a
“high risk” driving situation where the driver demonstrates intense drowsiness, as identified by the facial
analysis of the DMS component, with intense drowsiness and/or the unobstructed area of the road is
restricted (due to obstacles, a lot of traffic, small-ranged road, etc).

After the KG is populated through CASPAR, the above ruleset is executed in the form of a respective
SPARQL query “on-top” of the KG. The result is a risk level report, as illustrated in Figure 23. Outputs like
this can constitute parts of reports, e.g., after traffic accidents.

Figure 23: Graph indicating the risk levels during a driving session.

2.2.2 Manufacturing Pillar

The scenario we examined in the context of the Manufacturing Use Case revolves around a collaborative
application in an automotive assembly line and was presented at the Industry Track of the 2022 Extended

36

Semantic Web Conference (ESWC’22)26. According to the scenario, a human operator performs manual
assembly operations on a windshield handled and moved by a robot before assembly on the chassis. Our
overarching aim is to protect the operators from injuries and muscle strain and to reduce their body’s
strain by performing biophysics assessment for ergonomic optimization. Towards this end, we deploy a
semantic data integration framework for monitoring the human operators’ safety and well-being as they
are performing the requested operations.

The proposed implementation focuses on adjusting the position of the windshield according to the
operator’s ergonomics and providing personalised suggestions and warnings to the operator based on
their postures and the way that they use their body to perform an operation, in order to avoid long-term
musculoskeletal problems and other health and/or safety risks. The foreseen benefits of our solution are:
(a) improvement of the workers’ wellbeing at work; (b) mitigation of risks and accidents; (c) flexibility of
workplace management.

2.2.2.1 Setup and Deployment

A set of IoT sensors submit their measurements to respective analysis components: (a) footage from static
cameras analysed by computer vision components for estimating the operator’s anthropometrics
parameters (i.e., posture); (b) wearables (inertial measurement units – IMUs, i.e., accelerometers and
gyroscopes) for motion analysis and body tracking. The analysis outputs (and not the raw sensor
measurements) are then fed to an ontology-based semantic Knowledge Graph (KG) through CASPAR. Our
overall aim is to perform a proactive ergonomics optimization of the equipment. Figure 24 gives a
diagrammatic overview of the workflow. Note that only the higher-level analysis outputs are stored and
not the raw data itself, preventing issues of performance and storage costs.

The deployment is currently being tested in a virtual environment (i.e., simulator designed in Unity27) and
will soon be tested in a real factory setting at CRF premises. The simulation involves three static RGB
cameras located in three different areas of the working environment monitoring the "human’s" (i.e., a
digital human model) actions, while he collaborates with a robot to perform a specific task together.

Figure 24: Workflow overview.

Figure 25 illustrates a set of snapshots from the three different views in the simulated environment. A
pose estimation algorithm extracts in real time the posture landmarks and a confidence rate for each
estimation. The outputs are fed into the ontology via semantic data integration, while a set of rules
determine the camera with the best view. Based on this, our next aim will be to calculate the RULA (Rapid
Upper Limb Assessment) score, based on the joint angles. RULA is a well-established metric for calculating
the risk of musculoskeletal loading within upper limbs and neck.

26 https://2022.eswc-conferences.org/wp-content/uploads/2022/05/industry_Kontopoulos_et_al_paper_205.pdf
27 Unity homepage: https://unity.com/

37

Figure 25: Simulated environment snapshot.

The same pipeline will be adopted in the real-life industrial environment in the coming months, with
camera-based estimations from computer vision algorithms now coupled with body joints’ estimation
based on the IMU sensors in online monitoring.

2.2.2.2 Input Data

The pose estimation algorithm extracts posture landmarks and confidence rates roughly at a per second
rate and generates JSON outputs in the following format:

{
"timestamp": "02-09-2021 02:11:09.000",
"source": "backView",
"results": [
{

"property": "landmark_1",
"result": 0.86293

},
{

"property": "landmark_2",
"result": 0.89567033333333335

},
...
{

"property": "avg_cr",
"result": 0.70686023555555555

}
]

}

The source field takes one of three values, backView, frontView, sideView, while a set of 25 landmarks
on the human operator’s body are detected, along with respective confidence rates and an overall
average confidence rate for the whole set of landmarks per timestamp.

Similarly, to what has already been demonstrated above, the generated JSON outputs are fed to the
CASPAR semantic data integration framework, which populates the underlying semantic model
accordingly, via suitable SPARQL update queries.

2.2.2.3 Semantic Model

Figure 26 below displays in Graffoo notation the core semantic model, which extends the W3C-
recommended SOSA/SSN, similarly to what was also demonstrated for the first CPSoSaware use case.

38

Figure 26: Core semantic model for the Manufacturing Use Case

Below is a description of the core concepts included in the semantic model:

● AnalysisComponent (and its specialisations) represents the components receiving the raw data
measurements (e.g., camera feed and measurements from wearables), performing the respective
analyses, and generating the results.

● AnalysisOutput represents the “observations”, i.e., the outputs generated by the analysis
components, accompanied by a respective timestamp.

● AnalysisResult represents the actual results from the analysis, i.e., values and units (if
applicable).

● PoseEstimationProperty represents the observable property that is relevant to estimating the
correctness or not of the human operator’s pose.

2.2.2.4 Semantic Data Integration

Through the use of a specified mapping, CASPAR populates the core semantic model with instance data
coming from the pose estimation algorithm. Figure 27 illustrates a sample instantiation representing the
JSON excerpt presented in Subsection ‘Input Data’.

Figure 27: Sample instantiations

39

2.2.2.5 Results

This subsection presents insights generated by running respective SPARQL queries on top of the populated
semantic model.

1. Retrieve the Average Confidence Rate (CR) per Source
SPARQL Query

Result

2. Evolution of Average CR per Source for the Whole Session

SPARQL Query

40

Result

3. Retrieve the Source with the Best CR per Timestamp
SPARQL Query

Result (for the first 8 timestamps)

41

4. Indicate low CRs based on User-defined Threshold
SPARQL Query

Result (for avgCR < 0.3, threshold specified by user)

5. Retrieve Average Landmark Values for Upper Torso per Source
SPARQL Query

42

Result (for landmarks 2 to 8, corresponding to upper torso)

43

3 Model-Based design and re-design

In this section we explain CPSoSaware model-based design and redesign methodology, present DSM
model, and show an application of CPSoSaware model-based design and redesign methodology to DSM
model.

3.1 Model-based design and re-design methodology

CPSoSaware model-based design and re-design methodology is based on the HW-SW partitioning
optimization approach developed in Task 4.1 and described in detail in deliverables D4.1 and D4.6. This
approach contains several phases that are presented in Figure 28.

Figure 28: HW-SW partitioning optimization approach

In the context of Task 4.6 we extended simulation methods (Phase 4 and Phase 6 of partitioning
optimization approach) to handle various high-level system and SoS metrics such as the accuracy of AI
models implemented as corresponding application code in multiple scenarios. We also extend
optimization methods (Phase 5) to support multi-scenario optimization that enables the re-design phase.
Multi-scenario optimization allows us to determine a set of system models that are optimal in different
scenarios under different situational goals/objectives that also may change from scenario to scenario. The
support of multiple scenarios is also required in the modelling phase, so that the concise modelling
methodology described in D4.1, D4.6 is extended to support scenario definitions on the functional level.
This support is enabled by applying stereotype <scenario> to the functional block and the part used for
the definition of different scenarios. Once <scenario> part is present in the functional model, the concise
modelling plugin automatically translates it to a multi-scenario optimization model and runs optimization
sequentially for each scenario with respect to the situational goal specific for the scenario. The obtained
optimal solutions are then translated back to collections of Pareto optimal models, where each collection
relates to the corresponding scenario. Finally, optimal models are analysed by an expert and a re-design
strategy is created. This strategy can be presented as a set of rules, where each rule defines the conditions
when re-design decision should be triggered by CPSoS and which components should be
commissioned/decommissioned in the re-design phase to enable smooth adaptation of CPSoS to changes
in the environmental conditions. Resulting rules could be deployed to target CPSoS as part of AI
component such as Knowledge Graph as described in the Section 2.2 above. AI component will determine

44

when environmental conditions change to meet the definitions of another scenario and then trigger the
commissioning/decommissioning mechanism described in detail in D4.2/D4.3 to re-design target SoS and
adopt it to the changing environment.

3.2 DSM model

In this section we present initial evaluation of driver monitoring system model (DSM) performed in Task
4.4 and 5.1 and reported in deliverable D4.6, D5.1. The DSM solution uses a camera installed inside a car
to monitor the face of the driver. Each frame of this camera is analysed, and facial landmarks are aligned.
The position of these landmarks and their distance can be used to recognize whether the driver is yawning,
or if his eyes are sleepy. Moreover, the pose of his head can also reveal information about the driver’s
drowsiness level. The 2D facial landmark alignment method used in the algorithm is implemented with
C++ in the open-source libraries DLIB and Deformable Shape Tracking (DEST), is used in several
applications such as driver drowsiness detection, recognition of facial expressions, etc. The most
challenging of these applications require fast processing of video frames. Therefore, the alignment of the
facial landmarks in a single video frame has to be performed with the minimum possible latency without
precision loss. The fast 2D facial landmark detection algorithm that has been presented by Kazemi and
Sullivan where an Ensemble of Regression Trees (ERT) is used to estimate the position of the facial
landmarks, has been adopted in the DSM runnables. The algorithms and the overall experiments on how
to correctly design the runnables are presented in D4.6 and particular hardware and software runnables
that have been developed based on OpenCL and/or HLS C/C++ code using High level Synthesis tools (for
hardware) or OpenCL compilers (for software) presented in D5.1. The parameters of the ERT face
alignment model are described in D4.6 in detail. The ones that affect the implementation of the HW
kernels are listed in Table 5. From the description of the ERT parameters in this table it is clear that a trade-
off has to be made between accuracy and speed. Additionally, one should consider different conditions
that affect accuracy of different ERT models as well as power consumption of corresponding HW kernels,
that may affect other application and/or need to be considered in battery-low regimes.

Table 5: ERT parameters customized for the DSM application

Parameter
Name

Default
value

Experimentation
in the range

Description

Cascade
stages (Tcs)

10 9-12 Fewer cascade stages result in faster shape
estimation but with lower accuracy. However
error floor prevents accuracy improvement if
excessive cascade stages are added

Trees (Ntr) 500 400-600 Fewer trees increase speed but reduce
accuracy

Tree depth
(Td)

5 4-6 Number of tree nodes is 2Td-1. Shorter tree
depth (and consequently tree nodes) results
in faster operation but with lower accuracy

Reference
pixels (Nc)

600 400-800 This is the number of pixels that the sparse
image consists of. Fewer reference pixels are
expected to increase speed with accuracy
penalty

45

3.2.1 ERT models developed

Various models have been trained with the same Helen general purpose dataset. Table 6 shows the
combinations tested and the training error exposed by the DEST training application that has also been
ported to Ubuntu. A different application is used to evaluate a model using a test set of 300 photos,
different from the Helen dataset. The details of these models are discussed in D4.6.

Models M15 and M16 have been defined as combinations of various parameter values for the best
accuracy and the highest speed, respectively. Since we did not have a dataset available with driver images
and especially in nighttime lighting conditions, we defined three models called Dark0.3, Dark0.4 and
Dark0.5 that have been trained from the Helen images again but after artificially darkening them during
the training process.

The ERT parameters with the default values were used but a dynamic range adaptation has been applied
in grayscale to compress the pixel values to the 30%, 40% or 50% of their original range in the models
Dark0.3, Dark0.4 and Dark0.5, respectively. For example, if the pixel intensity is initially between 0 and
100, this intensity is linearly adapted to shorten the range between 0 and 30 in the Dark0.3 model. It is
obvious that Dark0.3 has been trained with darker images while Dark0.5 is closer to the M0 model. The
test error is worse than the other models. However, in a real car environment and nighttime drive it is
expected that the behavior of the Dark0.* models may be better than several other models listed in Table
6.

Table 6: ERT models used, based on different ERT parameters

3.2.2 Accuracy of the models

Exhaustive experiments are described in D4.6 concerning the accuracy of the models listed in Table 7
under different environmental conditions. Table 7 lists the conclusions about which models are more
appropriate for certain combinations of driver gender/lighting conditions/mount position of the camera.
The F1-score has been used to sort the model accuracy since this metric is a combination of precision and
sensitivity. The male and female drivers in daytime conditions have been evaluated with the YawDD

46

dataset (camera mounted on the mirror or the dash). The nighttime is evaluated for the present, only with
the 7 videos that we have developed. More exhaustive tests will be performed when the NYSEM dataset
will be available.

Table 7: Top-3 models with the highest accuracy in yawning measurement.

Condition Model
Male-Daytime-Dash M16, M8, M15

Male-Daytime-Mirror Dark0.3, M8, Dark0.5
Female-Daytime-Dash M12, M15, M16

Female-Daytime-Mirror Dark0.3, M8, Dark0.5
Male-Nighttime (from Table 5) M8, M16, M15

3.2.3 Latency and power consumption

The estimated power consumption of the models referenced in Table 7 is analyzed in Table 8 which shows
the dynamic power consumption and in Table 9. Since we are interested in the power consumption of the
kernels that are implemented in the PL system we get the total power dissipation, static and dynamic, by
adding all the power estimations for the PL part and the results are listed in Table 10. As we can see the
power consumption ranges between 2.665W (M16) and 2.905W (M15).

Regarding the latency of each HW kernel implementation and its effect on the overall processing time
needed by a single frame, the results are listed in Table 11. In the first row of Table 11 the latency of a
single frame is shown, as it is measured from the software side with appropriate print messages. In the
second row the HW kernel latency is listed as it is profiled using the XRT real time monitoring facilities
that generate a runtime csv file (profile_summary.csv). Since it was not possible to migrate data pixel
intensities using wide port and local BRAM in the same way we implemented migrate of the other HW
kernel arguments, its latency was measured separately as shown in the last row of Table 11.

Table 8: Dynamic power consumption of the HW kernels of the models referenced in Table 7.

Model/
Power

M0, M4,
Dark0.3,
Dark0.4,
Dark0.5

M8 M12 M15 M16

Clocks 0.496W (10%) 0.498W (10%) 0.515W (11%) 0.515W (10%) 0.461W (10%)

Signals 0.488W (10%) 0.510W (11%) 0.540W (11%) 0.561W (11%) 0.454W (10%)

Logic
0.369W (8%) 0.374W (8%) 0.399W (8%) 0.401W (8%) 0.350W (7%)

BRAM 0.585W (12%) 0.584W (12%) 0.586W (12%) 0.604W (12%) 0.576W (12%)

DSP 0.088W (2%) 0.089W (2%) 0.092W (2%) 0.088W (2%) 0.089W (2%)

MMCM 0.097W (2%) 0.097W (2%) 0.097W (2%) 0.097W (2%) 0.097W (2%)

PS 2.659W (56%) 2.659W (55%) 2.659W (54%) 2.659W (55%) 2.659W (57%)

47

Table 9: Static power consumption of the HW kernels of the models referenced in Table 7
Model/ Power M0, M4,

Dark0.3,
Dark0.4,
Dark0.5

M8 M12 M15 M16

PL
0.638W
(86%)

0.638W
(86%)

0.639W
(86%)

0.639W
(86%)

0.638W
(86%)

PS
0.100W
(14%)

0.100W
(14%)

0.100W
(14%)

0.100W
(14%)

0.100W
(14%)

Table 10: Total power dissipation of the PL part

Model/
Power

M0, M4,
Dark0.3,
Dark0.4,
Dark0.5

M8 M12 M15 M16

PL 2.761W 2.79W 2.868W 2.905W 2.665W

Table 11: Estimation of the single frame processing latency

3.3 Evaluation of model-based design and re-design methodology

3.3.1 System model and input data

DSM application high-level system model is presented in Figure 29. This model is created using concise
modelling extension of SysML28 described in detail in D4.1 and D4.6. The model consists of an Application
block and a Software Block. The Application block includes itsScenario and itsModel part that used to
describe different scenarios and different ERT models correspondingly. The itsScenario part has attributes

28 https://www.omg.org/spec/SysML

Model/Latencies M0
model

M4
Model

M8
Model

M12
Model

M15
Model

M16
Model

Dark0.3
Model

Dark0.4
Model

Dark0.5
Model

Notes

Frame processing time 33.166
ms

34.301
ms

34.658
ms

38.629
ms

47.756
ms

29.314
ms

33.816
ms

37.717
ms

33.371
ms

1st
Frame

HW kernel
Predict_Trees (XRT
profile_summary.csv)

2.33
ms

2.42
ms

2.37
ms

2.86
ms

2.90
ms

2.09
ms

2.26
ms

2.26
ms

2.40
ms

Worst
Case
(1st
frame)

Migrate pixel
intensities (XRT
profile_summary.csv)

0.076
ms

0.149
ms

0.160
ms

0.151
ms

0.153
ms

0.145
ms

0.149
ms

0.149
ms

0.114
ms

Worst
Case
(1st
Frame)

Maximum supported
frame rate

30 fps 29 fps 28 fps 25 fps 20 fps 34 fps 29 fps 26 fps 29 fps

48

that characterize particular scenario such as gender of the driver (male/female), camera positions
(dash/mirror) and light conditions (daytime /nighttime). In order to handle this part properly in the
automatic model a translation process is performed by the concise plugin we apply <scenario> stereotype
to this part. In total we have 8 different scenarios with different Id’s, that provided in excel table that is a
part of concise model.

Figure 29: Concise model of DSM application - design

Excel table with different scenarios presented in Figure 30. The itsModel part contains model name,
scenario Id and Accuracy attributes. This part has an Excel table with corresponding data behind, where
the Accuracy attribute represents an F1-score of corresponding models measured in the corresponding
scenario (note that measurement performed not for all possible scenarios). The itsScenario and itsModel
parts are connected by functional flow with attached constraint, meaning that the Scenario Id attribute
of the model should be equal to the Id attribute of Scenario.

49

The Software block contains itsHWKernel part that represents our decision on optimal model.
<optimized> stereotype on itsHWKernel part means that particular hardware kernel should be chosen by
the optimization and multiplicity of itsHWKernel part that equal to 1 means that only one hardware kernel
should be chosen in each particular scenario. The part is chosen from catalog that contains data on Latency
(equivalent to the frame processing time in Table 11) and power consumption (see Table 10) of different
ERT models. The Excel table representing this catalog is a part of the concise model and presented in
Figure 31.

Figure 30: Concise model of DSM application – scenario table

Figure 31: Concise model of DSM application – hardware kernels catalog

ItsModel part of the Functional block mapped to itsHWKernel part of the software block, meaning that
the hardware kernel performs functions of the corresponding model. Constraints on the mapping required
to ensure equality of the corresponding attributes in model and kernel.

To neutralize the effect of the unit’s measurements on the optimization model, we need to normalize all
the parameters of each ERT model and set them in the interval [0,1]. That way we fairly can priories the
different criterions with weights, without being affected from higher values related with one of the
criteria. In order to do this, we added additional attributes and constraints to the concise model.
Attributes NormAccuracy of ItsModel part and attributes NormPower and NormLatency of itsHWKernel
part are automatically calculated by formulas provided via corresponding constraints that are anchored
to these parts (see Figure 29). The following table describe the normalized power and latency parameters.

50

Table 12: Normalized latency and power consumption

Besides the accuracy that measures the quality of the model, each of the models can be evaluated
according to two other goals that are power consumption and latency. Optimization goals are modelled
as Software block attributes with corresponding constraints that connects these attributes to the
corresponding attributes of itsHWKernel part. Corresponding model presented in Figure 32.

Figure 32: Concise model of DSM application – optimization goals

3.3.2 Optimization model

Based on high-level system model presented in Figure 29, concise application automatically creates a
multi-scenario multi-objective optimization model that considers all three different goals (see Figure 32)
recognized with each model according to the relevancy and importance we allocate to each goal. The
more importance we choose to allocate to one goal, the better the goal our optimization model will
choose in the sense of that goal; for example if power consumption has a higher priority, a more energy-
saving hardware kernel will be chosen. In addition, we included in the optimization model strict-bounds
option (optimization constraints), that allows choosing the best model from only those models with
parameters that perform better than the fixed bounds. For example, for each scenario we need to choose
an optimal model from the models where the accuracy has a value above some threshold, otherwise DSM
application does not fulfill its function and such design is meaningless.

Below we present mathematical optimization model that automatically created from the concise model.
We wish to find the optimal model/kernel according to three goals: accuracy, power consumption and

Model/Latencies M0 M4 M8 M12 M15 M16 Dark0.3 Dark0.4 Dark0.5

Power 0.0330 0.0330 0.0430 0.0698 0.08261 0 0.0330 0.0330 0.0330

Latency 0.1044 0.1119 0.195 0.3861 0 0.0942 0.1759 0.0849

51

latency (we refer them here as goal 1, goal 2 and goal 3 respectively, so that goals are enumerated by 𝑗 =
1,2,3). We have 𝑘 = 1,… , 𝐾	 scenarios and our decision variables are 𝑥6 	 ∈ 	 {0,1} for each model/kernel
𝑖 = 1,… , 𝐼. Thus, our optimization functions for second and third goal (power consumption and latency)
could be modelled by the following formula:

𝑚𝑖𝑛)	𝑓?(𝑥) =j𝑡6
?𝑥6

@

6A#

where by 𝑡6
? we denote the normalized value of the goal 𝑗	 ∈ 	 {2,3} for the i’th model/kernel. In the case

of the first goal, we are interested in model/kernel hat maximize the accuracy. Hence the appropriate
formula is

𝑚𝑎𝑥)	𝑓?(𝑥) =j𝑡6,C# 𝑥6

@

6A#

where by 𝑡6,C# we denote the normalized value of the first goal (accuracy) for the i’th model/kernel in the
scenario k. Alternatively, denoting by 𝑡6,C# the minus of the normalized value of the first criterion for the
i’th model/kernel and scenario, our objective functions turns into a minimization of the form

𝑚𝑖𝑛)	𝑓?(𝑥) = ∑ 𝑡6,C
? 𝑥67

6A# , for all 𝑗	 = 1,… ,3.

Note that corresponding formulas in the OPL optimization language29 are create automatically from
constraints presented in Figure 32.

In order to get only one optimal model/kernel that fits our optimization goals for each specific scenario
we optimization model includes constraint ∑ 𝑥67

6A# = 1 that automatically created from the multiplicity
of itsHWKernel part. These constraints ensures that optimization will choose the model 𝑖 so that its
appropriate decision variable 𝑥6 will be equal to 1 in the optimal solution. In addition, we add a set of
constraints to ensure that the optimized model/kernel will satisfy our fixed bounds:

m
∑ 𝑠6,C

? 𝑥6@
6A# 	≥ 𝑏+?

∑ 𝑠6,C
? 𝑥6@

6A# 	≤ 	 𝑏D?
 for 𝑗	 = 1,… ,3,

where by 𝑏+? , 𝑏D? ,	 we denote the fixed (lower and upper) bounds to which our model should satisfy and

by 𝑠6,C
? we denote the real (not normalized) value of the parameter 𝑗 for the i’th model/kernel in the

scenario k. The sign of inequality depends by the type of bound (upper or lower) that we would like to
apply to the system. In our case these means that we would like to have a model with accuracy that above
some threshold and latency and power consumption that is below some threshold.

To combine multi-objective optimization model into single-objective ILP (Integer Linear Programming)
problem concise application add weight parameters to each optimization objective that define different
priorities which optimization allocates to the different goals in order to find an optimized model/kernel
that considers those priorities. This could be presented by the following formula

 𝑓(𝑥) = 	∑ (𝑤? ∑ 𝑡6,C
? 𝑥67

6A#
E
?A#),

where 𝑤	is the relative weights vector, representing how much weight optimization allocates to each of
the objectives. For the resulting single-objective ILP concise application further adds constraint 𝑘 = 𝑘F

29 https://www.ibm.com/docs/en/icos/22.1.0?topic=opl-optimization-programming-language

52

where 𝑘F is a number of scenarios for which optimization should find optimal model/kernel. Resulting
single-scenario single-objective ILP solved by CPLEX optimization solver30 for each scenario and for the
different combinations of weights for the different objectives.

3.3.3 Results

Following tables summarize the optimization problems we solved for all the scenarios (different driver
identity and camera position) using our model. We used different choices of weights to find the optimize
model under different conditions and priorities of our three main criterions (F1-score, power consumption
and latency). The following tables summarize different types of optimization problems that we solved for
the various scenarios (different driver identity, day period and camera position) using our model. We used
two choices of weights. The first one emphasis the quality of the model over considerations of latency
and energy consumption. These settings should be considered when more frequent frame rate
environment is in use since high latency is balanced by the high frequent sampling.

The other choice of weights allocates an equal attention to all goals and achieved that by setting the
weight of each goal to 0.33. These settings should be considered when low frequent frame rate
environment is in use, to prevent long waiting for the system feedback.

Table 13: Optimization results - Male-Dash Scenario

Table 14: Optimization results - Male-Mirror Scenario

Table 15: Optimization results - Female-Dash Scenario

30 https://www.ibm.com/analytics/cplex-optimizer

Frame Processing Rate Weights Bounds Best Model
Rate=2 (0.9, 0.05, 0.05) (0, 10, 40) Model 16
Rate=2 (0.33, 0.33, 0.33) (0, 10, 40) Model 16
Rate=10 (0.9, 0.05, 0.05) (0, 10, 40) Model 4
Rate=10 (0.33, 0.33, 0.33) (0, 10, 40) Model 16

Frame Processing Rate Weights Bounds Best Model
Rate=2 (0.9, 0.05, 0.05) (0, 10, 40) Model Dark0.4
Rate=2 (0.33, 0.33, 0.33) (0, 10, 40) Model 16
Rate=10 (0.9, 0.05, 0.05) (0, 10, 40) Model Dark0.3
Rate=10 (0.33, 0.33, 0.33) (0, 10, 40) Model 16

Frame Processing Rate Weights Bounds Best Model
Rate=2 (0.9, 0.05, 0.05) (0, 10, 40) Model 16
Rate=2 (0.33, 0.33, 0.33) (0, 10, 40) Model 16
Rate=10 (0.9, 0.05, 0.05) (0, 10, 40) Model 4
Rate=10 (0.33, 0.33, 0.33) (0, 10, 40) Model 16

53

Table 16: Optimization results - Female-Mirror Scenario

Table 17: Optimization results - Night-time Scenario

Frame Processing Rate Weights Bounds Best Model
Rate=2 (0.9, 0.05, 0.05) (0, 10, 40) Model 16
Rate=2 (0.33, 0.33, 0.33) (0, 10, 40) Model 16

According to the results presented above the best model/kernel for most scenarios is Model16, however
model re-design required in a case of high accuracy requirements in some scenarios. Alternative models
are:

• Model 4 in daytime dash scenarios when processing rate is low (Rate=10)
• Model Dark0.4 in daytime mirror scenario with fast processing rate (Rate=2)
• Model Dark0.3 in daytime mirror scenario with slow processing rate (Rate=10)

The optimal model for all case does not depends on gender of the driver (male/female).

Frame Processing Rate Weights Bounds Best Model
Rate=2 (0.9, 0.05, 0.05) (0, 10, 40) Model Dark0.4
Rate=2 (0.33, 0.33, 0.33) (0, 10, 40) Model 16
Rate=10 (0.9, 0.05, 0.05) (0, 10, 40) Model Dark0.3
Rate=10 (0.33, 0.33, 0.33) (0, 10, 40) Model 16

54

4 Conclusions

In this document we presented CPSoSaware AI framework and model-based design and re-design
methodology. In the context of AI framework, we performed multimodal odometer fusion evaluation
studies that based on realizes sensor cooperation approach that is important for improving two major
tasks of autonomous driving: vehicle odometry or SLAM and scene analysis and understanding. The sensor
cooperation indeed necessary in order to maximize overall performance of the vehicle. Furthermore, a
vertical fusion strategy has been developed for each one of the associated tasks, which integrates in a
combined estimation framework the data from “selfish nodes”, i.e., outputs of individual sensors, and
provides more accurate pose information as well as object detection. This methodology evaluated on the
simulated scenarios provided by CARLA-ROS framework and the evaluation results shows it importance
in the context for the autonomous driving use-case. Moreover, the approach of “early” fusion of selfish
sensor agents extended by a vertical AI mechanism based on a novel semantic data integration. In this
case the analysis outputs, which are not the raw sensor measurements as previously, are fed to an
ontology-based semantic Knowledge Graph (which defines the set of incentives) through the flexible
semantic data integration framework of CASPAR. This vertical AI mechanism validated both in automotive
and manufacturing use-cases.

CPSoSaware model-based design and re-design methodology based on HW-SW partitioning optimization
approach that developed in Task 4.1. To enable re-design capabilities model-based optimization approach
extended by additional simulation and optimization capabilities in order to support multi-objective multi-
scenario optimization, that is crucial for the re-design phase. Developed methodology validated on the
driver state monitoring application and set of optimal models for different scenarios are provided. The
results are presents re-design strategy w.r.t different scenarios and different importance of objectives
(accuracy/latency/power) and provides an incentive for development of CPSoS adaptation strategy that
will use commissioning/decommissioning mechanism to adopt DSM application to the different
environmental conditions.

