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1 Executive Summary  

This document contains the joint output of Task 4.5 “Cognitive System AI-assisted maintenance and CPSoS lifecycle 
Design Continuum Support” and Task 4.6 “Model-based Design and Redesign of CPSoS Functional blocks 
Realization”. Task 4.5 deals with the coordination of adaptation mechanisms within and across layers to ensure 
system-wide consistency and the incorporation of emerging machine learning techniques to address challenging 
situations. In the context of this task, we developed vertical AI schemes for cooperative fusion of different sensor 
agents.  Sensor cooperation is necessary in order to maximize overall performance of vehicles under various 
environmental conditions, where particular sensors may fail or provide inaccurate data. To test our cooperative 
sensor fusion approach, we performed multimodal odometer fusion evaluation studies that based on 
realizes sensor cooperation approach that is important for improving two major tasks of autonomous 
driving: vehicle odometry or SLAM and scene analysis and understanding. Furthermore, we developed a 
vertical fusion strategy, which integrates the data from “selfish nodes”, i.e., outputs of individual sensors into a 
combined estimation framework, and provides more accurate pose information as well as object detection. The 
vertical fusion of selfish sensor agents is extended by a vertical AI mechanism based on a novel semantic data 
integration framework for monitoring and safeguarding the ergonomics of human operators during a collaborative 
assembly task in an automotive manufacturing environment. This mechanism is a part of CPSoSaware Cognitive 
System AI Engine (CSAIE) component that analyses outputs of cooperative sensor measurements and feeds them to 
the ontology-based semantic Knowledge Graph (KG) (which defines the set of incentives) through the flexible 
semantic data integration framework. CSAIE component’s primary purpose is to provide cognitive control and 
management mechanism of the CPSoS functional and non-functional goals as those are captured through the 
requirement KPIs of the system. The CSAIE collects inputs of different sensors and performs a broad analysis on the 
sensors data in combination with simulated training datasets from the SAT block using an AI engine. These allow us 
to collect data on functional and non-functional KPIs of different modules and parts of CPSoS under different 
environmental conditions, in order to identify the set of optimal model-based designs, where each particular design 
provides an optimal combination of values for the specific set of KPIs under specific environmental condition. The 
identification of such designs is performed in Task 4.6. 

The main purpose of Task 4.6 is to develop a model-based design and re-design component which selects 
models/designs that are optimal with respect to different objectives under different environmental conditions and 
triggers re-design with respect to the most important situational objectives of the current environmental conditions. 
The choice of optimal models/designs introduces a trade-off between different objectives. To handle this trade-off, 
we considered a multi-objective multi-scenario optimization approach that produces a set of optimal designs. Each 
design corresponds to one or several scenarios and/or to one or several combinations of situational goals. This allows 
triggering the re-design process when environmental conditions change, ensuring that at that target SoS always has 
a design that is optimized with respect to situational goals. The re-design phase itself utilizes commissioning and 
decommissioning mechanism that developed in the scope of Tasks 4.2/4.3 and described in detail in the 
corresponding deliverables. In the context of Task 4.6 we describe model-based design and re-design methodology 
and present evaluation of this methodology to the driver monitoring system model (DSM).   

1.1 Document structure 

This document is structured into eight major sections: 

• Section 1 introduces the document, outlining its structure, and identifying terms and acronyms 
used across the document. 

• Section 2 describes CPSoSaware AI framework and shows multimodal odometer fusion evaluation 
study and presents vertical AI mechanism based on a data integration framework with application 
to automotive and manufacturing use-cases.   

• Section 3 presents CPSoSaware model-based design and re-design methodology and describes 
evaluation of this methodology on driver monitoring system model. 
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• Section 4 concludes the document. 

1.2 Definitions and Acronyms 

Below are listed the most relevant acronyms used in the document and recurring definitions: 

Acronym / Term Definition 

AI Artifical Intelengences 
AOS Average Orientation Similarity  
ATE Absolute Trajectory Error  
BEV Bird Eye View  
BRAM Block Random Access Memory 
CASPAR CTL’s proprietary semantic data integration framework 
CL Cooperative Localization  
CPS Cyber-Physical System 
CPSoS Cyber-Physical System of Systems 
CR Confidence Rate 
CSAIE Cognitive System AI Engine  
DEST Deformable Shape Tracking  
DMS Driver Monitoring System  
DoA Grant Agreement No. 871738 – CPSoSAware. Annex 1 Description of the Action  

DSM Driver Monitoring System  
DSO Direct Sparse Odometry  
DSP Digital Signal Processor 
EAR Eye Aspect Ratio  
ERT Ensemble of Regression Trees  
HLS High Level Synthesis 
HW Hardware 
ILP Integer Linear Programming 
IMU Inertial Measurement Unit  
IOU Intersection Over Union  
JSON JavaScript Object Notation 
KF Kalman Filter 
KG Knowledge Graph  
KITTI The KITTI Vision Benchmark Suite 

A project of Karlsruhe Institute of Technology 
and Toyota Technological Institute at Chicago 

KPI Key Performance Indicator 
LeGO-LOAM Light Weight and Ground Optimization LIDAR Odometry and Mapping  
LIDAR  Light Detection and Ranging 
LOD Linked Open Data  
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MAC Multiply ACcumulate  
MAP Maximum A Posteriori  
mAP Mean Average Precision  
MMCM Mixed-Mode Clock Manager 
NMS Non-Maximum Suppression 
OF Occupancy Factor  
OFE Occupancy Factor Estimation  
OPL Optimization Programming Language 
PERCLOS Percentage of Eye CloSure  
PL Programmable Logic 
PS Processing System 
RAM Random Access Memory 
RDF  Resource Description Framework 
RMSE  Root Mean Square Error 
ROS  Robot Operating System 
RPE Relative Pose Error 
RULA Rapid Upper Limb Assessment 
SAT Simulation and Training 
SGD Stochastic Gradient Descent  
SLAM Simultaneous Localization And Mapping 
SPARQL Standard Query Language and Protocol for Linked Open Data 
SySML Systems Modeling Language 
W3C The World Wide Web Consortium 
XRT Xilinx Runtime Library 
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2 AI Framework  

2.1 Multimodal odometer fusion evaluation studies 

This Section is dedicated to the presentation of vertical AI schemes for cooperative fusion of different 
sensor agents, i.e., LIDAR and camera, for improving namely two major tasks of autonomous driving: 
vehicle odometry or SLAM and scene analysis and understanding. SLAM approaches rely on camera or 
LIDAR sensor, which are susceptible to failure in harsh conditions (e.g., extreme weather, featureless 
areas, sharp turns, etc.). Sensor cooperation is therefore necessary in order to maximize overall 
performance of vehicle and will be realized through Graph Laplacian Processing fusion technique. The 
same limitations are also apparent when either of the two sensors is used for scene analysis and 
understanding, thus LIDAR and image data fusion becomes imperative. For this case, a geometric 
approach is introduced which fuses the output of the two sensors from 3D-to-2D projection. More 
specifically, a vertical fusion strategy has been developed for each one of the associated tasks, which 
integrates in a combined estimation framework the data from “selfish nodes”, i.e., outputs of individual 
sensors, and provides more accurate pose information as well as object detection. In following, we will 
shortly review the developed multi-modal re-localization and scene analysis and understanding schemes. 
Afterwards, we will describe the details of its deployment in the CARLA-ROS framework.  

For the purposes of this deliverable, three state-of-the-art SLAM solutions, i.e., Direct Sparse Odometry 
(DSO)1, ORB-SLAM2, and Light Weight and Ground Optimization LIDAR Odometry and Mapping (LeGO-
LOAM)3, have been integrated to CARLA-ROS framework and have been previously analyzed in D3.1 

Those three algorithms enabled the design and development of the proposed multimodal re-localization 
odometry scheme. The details are discussed below: 

DSO is a visual odometry method based on a novel, highly accurate sparse and direct structure and motion 
formulation. It exploits a probabilistic model (minimizing a photometric error) with consistent, joint 
optimization of all model parameters, including geometry-represented as inverse depth in a reference 
frame-and camera motion. This probabilistic model takes noisy measurements 𝑌 as input and computes 
an estimator 𝑋  for the unknown, hidden model parameters (3D world model and camera motion), 
following a Maximum A Posteriori (MAP) approach. Due to the direct formulation of DSO, it directly uses 
the actual sensor values-light received from a certain direction over a certain time period-as 
measurements 𝑌 in the probabilistic model. Additionally, one of the main benefits of a direct formulation 
is that it does not require a point to be recognizable by itself, thereby allowing for a more finely grained 
geometry representation (pixelwise inverse depth). Furthermore, data from across the image can be 
sampled—including edges and weak intensity variations generating a more complete model and lending 
more robustness in sparsely textured environments. A sparse framework (these methods use and 
reconstruct only a selected set of independent points, traditionally corners) has been chosen during the 
optimization since the main drawback of adding a geometry prior, as dense methods do, is the 

 
1 J. Engel, V. Koltun and D. Cremers, "Direct Sparse Odometry," in IEEE Transactions on Pattern Analysis and Machine 
Intelligence, vol. 40, no. 3, pp. 611-625, 1 March 2018, doi: 10.1109/TPAMI.2017.2658577. 

2 R. Mur-Artal, J. M. M. Montiel and J. D. Tardós, "ORB-SLAM: A Versatile and Accurate Monocular SLAM System," in IEEE 
Transactions on Robotics, vol. 31, no. 5, pp. 1147-1163, Oct. 2015, doi: 10.1109/TRO.2015.2463671. 

3 T. Shan and B. Englot, "LeGO-LOAM: Lightweight and Ground-Optimized Lidar Odometry and Mapping on Variable Terrain," 
2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2018, pp. 4758-4765, doi: 
10.1109/IROS.2018.8594299. 
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introduction of correlations between geometry parameters, which render a statistically consistent, joint 
optimization in real time infeasible. Backend optimization is performed in a sliding window, exploiting 
Gauss-Newton algorithm, where old camera poses as well as points that leave the field of view of the 
camera are marginalized. In contrast to existing approaches, this method further takes full advantage of 
photometric camera calibration, including lens attenuation, gamma correction, and known exposure 
times. This integrated photometric calibration further increases accuracy and robustness. DSO, apart from 
a geometric camera model which comprises the function that projects a 3D point onto the 2D image, 
considers also a photometric camera model, which comprises the function that maps real-world energy 
received by a pixel on the sensor (irradiance) to the respective intensity value. Two additionally important 
modules of DSO are Frame and Point Management. In terms of Frame Management, a window of up to 
𝑁! active keyframes (𝑁! 	= 	7 is used) must be kept. Every new frame is initially tracked with respect to 
these reference frames (Step 1). It is then either discarded or used to create a new keyframe (Step 2). 
Once a new keyframe-and respective new point are created, the total photometric error is optimized. 
Afterwards, one or more frames are marginalized (Step 3). As far as the Point Management is concerned, 
a fixed number 𝑁"  of active points (we use 𝑁" 	= 	2000), equally distributed across space and active 
frames, is used in the optimization. As a first step, 𝑁" candidate points are identified in each new keyframe 
(Step 1). Candidate points are not immediately added into the optimization, but instead are tracked 
individually in subsequent frames, generating a coarse depth value which will serve as initialization (Step 
2). When new points need to be added to the optimization, a number of candidate points (from across all 
frames in the optimization window) is chosen to be activated, i.e., added into the optimization (Step 3). 
Note that DSO only keeps 𝑁" active points across all active frames combined. 

ORB-SLAM, is a feature-based monocular SLAM system that operates in real time, in small and large 
indoor and outdoor environments. The system is robust to severe motion clutter, allows wide baseline 
loop closing and relocalization, and includes fully automatic initialization. Building on excellent algorithms 
of recent years, a novel system that uses the same features for all SLAM tasks is designed: tracking, 
mapping, relocalization, and loop closing. ORB-SLAM system overview is shown in Figure 1. ORB-SLAM 
extends the mapping capability to large scale spaces by dividing the mapping thread into a local mapping 
thread and a global mapping thread. The local mapping thread maintains a set of keyframes and 
landmarks which the tracking thread is used for camera pose estimation. However, in ORB-SLAM the local 
map is bounded in its complexity by only including keyframes that visually overlap with the current 
keyframe. During the tracking process correspondences between the input frame and the local map are 
computed. As keyframes are added to the local map, starting with the correspondences detected by the 
tracking thread, a further correspondence 
search is carried out to compute the level of 
visual overlap (i.e., shared features) 
between other keyframes in the local map. 
This information is stored in a co-visibility 
graph, where edges are added between 
camera nodes that share features. The 
weight of an edge corresponds to the 
number of shared features between its 
associated cameras. During operation the 
local mapping thread only considers 
keyframes linked to the current reference 
frame via edges above a threshold weight. As 
the camera explores, new keyframes are 
added liberally to the local map to ensure 

Figure 1: ORB-SLAM architecture 
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robust tracking, however in order to ensure complexity of the local mapping is bounded, keyframe and 
landmark culling strategies are also employed. Taken together, the co-visibility graph and the culling 
strategies decouple the complexity of the local mapping process from the scale of the global map. ORB-
SLAM’s large scale mapping capability is provided by a third thread. As each new keyframe is added to the 
co-visibility graph, the strongest associated edge is also added to a second essential graph. The strongest 
edge connects the new keyframe to the keyframe with the highest number of shared features. The 
essential graph therefore contains all of the keyframes from the co-visibility graph, but only a subset of 
the edges that form a spanning tree from the first keyframe, and any edges that are added due to loop 
closures. Therefore, as new frames are input from the camera, they are first processed by the tracking 
thread which execute the following stages: i) ORB feature extraction, ii) Pose estimation and 
relocalization, iii) Local map tracking, and iv) Keyframe generation. As new keyframes are inserted the 
local mapping thread culls map and keyframes, adds new map points, and performs local bundle 
adjustment on the local map. In more detail, it executes the following steps: i) Keyframe insertion, ii) Map-
point culling, iii) New point creation, iv) Local Bundle Adjustment, v) Keyframe culling. Finally, as new 
keyframes are generated the loop closing thread attempts to detect loop closures as follows: i) Place 
recognition & loop detection, ii) 7DOF (translation, rotation and scale) constraint estimation, iii) Loop 
fusion and iv) Pose graph optimization. 

LeGO-LOAM is a LIDAR 
odometry solution for pose 
estimation in complex 
environments with variable 
terrain. LeGO-LOAM is 
lightweight, as real-time pose 
estimation and mapping can be 
achieved on an embedded 
system. Point cloud 
segmentation is performed to 
discard points that may 
represent unreliable features 
after ground separation. LeGO-
LOAM is also ground-optimized, 
as a two-step optimization for 
pose estimation is introduced. 
Planar features extracted from 
the ground are used to obtain 𝑧 
translation, roll and pitch during 
the first step. In the second step, the rest of the transformation (𝑥, 𝑦 translation and yaw) is obtained by 
matching edge features extracted from the segmented point cloud. The ability to perform loop closures 
to correct motion estimation drift is also introduced. Lego-LOAM system overview is shown in Figure 2. 
The overall system is divided into five modules. The first, segmentation, takes a single scan’s point cloud 
and projects it onto a range image for segmentation. The segmented point cloud is then sent to the 
feature extraction module, which determines two types of features: edge and planar. Then, LIDAR 
Odometry uses features extracted from the previous module to find the transformation relating 
consecutive scans using the two-step Levenberg-Marquardt optimization. The features are further 
processed in LIDAR mapping, which registers them to a global point cloud map. At last, the transform 
integration module fuses the pose estimation results from lidar odometry and LIDAR mapping and outputs 
the final pose estimate. The proposed system seeks improved efficiency and accuracy for ground vehicles, 

Figure 2: LeGO-LOAM architecture 
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with respect to the original, generalized LOAM framework. LeGO-LOAM doesn’t perform any backend 
optimization as DSO does.  

2.1.1 Relocalization scheme 

The overview of the proposed multimodal re-localization scheme is shown in Figure 3. At the core of our 
approach lies the concept of coupling the pose from one modality (e.g., visual) with the landmarks of the 
other modality (e.g., LIDAR) through Graph Laplacian Processing technique, a graph signal processing tool. 
The intuition behind our motive was that by effectively combining poses and landmarks from different 
modalities, referring however to the same task, a more accurate pose of the vehicle could be produced. 
Therefore, as a first step, Graph Laplacian is used to estimate the new pose (𝑥, 𝑦 position and yaw angle) 
separately for the two groups of data. Afterwards, using the two estimated poses in the measurement 
models, we run two linear Kalman Filters (KFs) assuming the constant velocity motion model. The two KFs 
produce also the covariance matrices related to their (Gaussian) estimations. We employ a technique4 of 
fusing the two estimated poses in an optimal manner and avoiding any handcrafted weights. 

Assume two groups of Gaussians means and covariances: (𝑥#, Σ#), (𝑥$, Σ$).  Compute initially matrices: 

𝑃! = Σ!"!(Σ!"! + Σ#"!)"! 
 

𝑃# = Σ#"!(Σ!"! + Σ#"!)"! 
The optimal mean and covariance will be equal to: 𝑥%"& = 𝑃#𝑥# + 𝑃$𝑥$ and Σ%"& = 𝑃#Σ#𝑃#' + 𝑃$Σ$𝑃$'.  
The same approach is followed in our framework using the estimations (mean and covariance) of the two 
KFs. The motion model utilized by each KF is described by the following equations: 

𝑥$ = 𝑥$"! + 𝑢)%$Δ𝑡 
 

𝑦$ = 𝑦$"! + 𝑢)&$Δ𝑡 
 

𝜃$ = 𝜃$"! + 𝜔/$Δ𝑡 
Note that [𝑥&(#, 𝑦&(#, 𝜃&(#] correspond to the previous estimations of individual KF, not the outputs of 
fusion level. It is assumed that control parameters of linear velocities 𝑢6)& , 𝑢6*&  and yaw rate 𝜔8& are given by 
the Inertial Measurement Unit (IMU). In addition, all three motion parameters are degraded by Gaussian 
measurement noise: 

 
𝑢)%$ = 𝑢%$ + 𝑛'! 	, 𝑛'! ∼ 𝒩(0, 𝛼𝑢%$ ) 

 
	𝑢)&$ = 𝑢&$ + 𝑛'" 	, 𝑛'" ∼ 𝒩70, 𝛼𝑢&$ 8 

 
𝜔/$ = 𝜔$ + 𝑛(	, 𝑛( ∼ 𝒩(0, 𝛽	𝑑𝑒𝑔𝑟𝑒𝑒𝑠	𝑝𝑒𝑟	ℎ𝑜𝑢𝑟), 

 

 
4 P. Yang, D. Duan, C. Chen, X. Cheng and L. Yang, "Multi-Sensor Multi-Vehicle (MSMV) Localization and Mobility Tracking for 
Autonomous Driving," IEEE Transactions on Vehicular Technology, vol. 69, p. 14355–14364, 12 2020 
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Figure 3: Multimodal re-localization scheme 

 
where 𝑢)& , 𝑢*& , 𝜔& are the actual velocities and yaw rate. Velocity noise is modelled so as to simulate the 
accumulative or drift error of IMU, while yaw rate measurement noise is known as angle random walk.  

In terms of KF’s measurement models, the latter will be feeded by the output of fusion level. To be more 
specific and considering the left branch of Figure 3, assume that 2D position and yaw measured by the 
Laplacian Processing will be equal to 9𝑥+,"+& , 𝑦+,"+& , 𝜃+,"+& :. The previously estimated state by the fusion 
mechanism is equal to 9𝑥!&(#, 𝑦!&(#, 𝜃!&(#:. The measurement vector 𝒛𝒕 shall be comprised of a weighted 
version of Laplacian Processing and motion-updated fused outputs: 

 
𝒛𝒕 = C𝑤! ∗ 7𝑥*$"! + 𝑢%$𝛥𝑡8 + 𝑤# ∗ 𝑥+,-+$ , 𝑤! ∗ 7𝑦*$"! + 𝑢&$𝛥𝑡8 + 𝑤# ∗ 𝑦+,-+$ , 	𝑤. ∗ 7𝜃*$"! + 𝜔$𝛥𝑇8

+ 𝑤/ ∗ 𝜃+,-+$ H	
 
The weights 𝑤#, 𝑤$, 𝑤., 𝑤/ are used to balance between the motion-updated fusion and Graph Laplacian 
Processing. 

Furthermore, instead of using the whole number of landmarks detected by visual or LIDAR SLAM, we 
choose to discard those who are far away than the corresponding pose. To do so, we measure all the 
relevant distances between individual landmarks and pose. Afterwards, we construct the histogram of the 
distances and choose the first 𝑛 centroids out of the total bins of the histogram. Then we take the sum of 
these 𝑛 centroids and discard the distances which exceed this sum. Finally, the distance threshold is 
determined by taking the average distance of the remaining landmarks. The steps for this novel strategy 
are summarized in Table 1. 

Table 1: Algorithm: Adaptive selection of involved landmarks 
For every time instant 𝑡, repeat: 
Step 1: Measure distances between individual landmarks and pose 
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Step 2: Construct the histogram of distances and keep the centroids of first 𝑛 out of total 𝑁 bins 

Step 3: Take the sum of 𝑛 centroids and discard the landmarks whose distance from pose exceed this 
sum 

Step 4: Set the dynamic threshold equal to the average of the remaining distances 

 

2.1.2 Implementation using CARLA-ROS framework 

The integration to the Carla-ROS framework is the development of the appropriate ROS nodes that will 
implement a specific algorithmic behavior. These nodes either contain all the resources necessary for 
executing the algorithm or the call an appropriate library. Every ROS node consumes and published data 
in the context of the ROS framework, under ROS topics. The type of these messages is either predefined 
by the ROS framework or custom types can be created and used. The synchronization of all the nodes is 
provided by the ROS framework. Concerning the programming languages, the nodes are either 
implemented in Python or in C++. 

All the nodes consume data generated in the Carla simulation environment. The data can be either 
generated asynchronously (rosbags) or synchronously. In the latter case, the user of the Carla-ROS -bridge 
is necessary for the establishment of the bi-directional communication between Carla and the ROS 
framework. 

 
Figure 4 Overview of the Carla ROS setup 

 

2.1.3 Experimental setup in CARLA-ROS and results  

In this Section, we demonstrate the performance of the proposed scheme using the CARLA simulator and 
ROS framework. DSO, ORB-SLAM and LeGO-LOAM algorithms have been employed to generate the pose 
of vehicle and landmarks of the map. The evaluation study has been conducted considering the weather 
conditions of the specific testing setup, while we drive the car (autonomous pilot has been deactivated). 

In the first simulated test case of Figure 5, the output at each one of the four time instances contains the 
instantaneous absolute translational error (top left), RMSE of absolute translational error over the entire 
trajectory up to the current time instant (bottom left), map generated by LeGO-LOAM (top right) and the 
testing setup (bottom right). RMSE of translational error over the entire trajectory is a more indicative 
metric of the performance since it demonstrates the overall ability of algorithms to provide localization 
information. Due to the sunny weather and normal driving style (avoiding sharp turns or sudden 
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breakings) the proposed scheme is between LeGO-LOAM and DSO. Actually, LeGO-LOAM is shown to be 
superior to the other approaches. More specifically, LeGO-LOAM, proposed Fusion and DSO achieved 
maximum (instantaneous and overall) translational errors, respectively, equal to: 3.1m and 1.6m, 3.1m 
and 3.2m, and 5.2m and 4.4m in Figure 5-(a), 4m and 1.6m, 3.1m and 3.2m, and 5.2m and 4.4m in Figure 
5-(b), 4.1m and 1.2m, 2.4m and 2.4m, and 4.2m and 4.4m in Figure 5-(c), and finally 3.1m and 1.6m, 3.1m 
and 3.2m, and 5.2m and 4.4m in Figure 5-(d). Although in some cases instantaneous position error with 
the proposed Fusion mechanism is smaller than LeGO-LOAM’s, the latter achieved in all cases much more 
accurate overall positioning error, demonstrating higher localization ability. Therefore, we conclude that 
in normal driving conditions, LeGO-LOAM is more credible for the SLAM task.  

(a) (b) 

(c) (d) 
Figure 5: Simulated test case 1: Normal weather conditions 

 
In the second simulated test case of Figure 6, we see that the performance of LeGO-LOAM has been 
degraded as a result of changing weather conditions to hard rain at noon, along with sharp turns during 
driving. Additionally, instead of DSO we employed ORB-SLAM (with ORB-SLAM3 implementation edition). 
More specifically, LeGO-LOAM, proposed Fusion and ORB-SLAM achieved maximum (instantaneous and 
overall) translational errors, respectively, equal to: 7.5m and 6.3m, 7.5m and 7.8m, and 3.5m and 3.2m in 
Figure 6-(a), 7.5m and 6.3m, 7.5m and 7.8m, and 3.8m and 3.3m in Figure 6-(b), 6.5m and 4.5m, 2.1m and 
3.2m, and 3.7m and 3.2m in Figure 6-(c), and finally 6.1m and 4m, 2.1m and 2.2m, and 3.2m and 3.1m in 
Figure 6-(d). From Figure 6-(c) and (d), we see that the proposed Fusion reduced significantly not only the 
maximum errors, but constantly achieved lower translational errors than the other schemes. Therefore, 
when harsh conditions exist and performance of original SLAM algorithms is degraded, the proposed 
mechanism is able to significantly reduce position error.  
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(a) (b) 

(c) (d) 
Figure 6: Simulated test case 2: Hard rain at noon 

 
In the third simulated test case of Figure 7, we see that the performance of Fusion is now better than the 
other algorithms is all four cases, especially for the overall translational error of trajectory. Moreover, in 
Figure 7-(d), when ORB-SLAM and LeGO-LOAM are unable to produce accurate localization information 
due to sharp turn, proposed scheme is able to keep instantaneous error below 7.5m. More specifically, 
LeGO-LOAM, proposed Fusion and ORB-SLAM achieved maximum (instantaneous and overall) 
translational errors, respectively, equal to: 2.4m and 1.75m, 1m and 1m, and 2.4m and 2.5m in Figure 7-
(a), 4.4m and 2.5m, 1.8m and 1m, and 5.8m and 3.5m in Figure 7-(b), 4.4m and 2.25m, 1.8m and 1m, and 
5.8m and 3.5m in Figure 7-(c), and finally 20m and 7.5m, 6.25m and 2.5m, and 12.5m and 4.4m in Figure 
6-(d). Therefore, with hard rain at noon, the quality of visual data is degraded and as a matter of fact the 
accuracy of SLAM algorithms is reduced. In those cases, the proposed Fusion mechanism is able to 
increase positioning accuracy.   
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(a) (b) 

(c) (d) 
Figure 7: Simulated test case 3: Hard rain at noon 

 
In the following scenarios, the configuration of weather has changed to medium weather at noon. Once 
again, we see from Figure 8 that the Fusion mechanism achieved the greatest accuracy, mainly in terms 
of overall translational error. More specifically, LeGO-LOAM, proposed Fusion and ORB-SLAM achieved 
maximum (instantaneous and overall) translational errors, respectively, equal to: 8.6m and 5.3m, 2m and 
1.6m, and 5.2m and 5.4m in Figure 8-(a), 7.8m and 3m, 4.5m and 1.75m, and 2.8m and 3m in Figure 8-(b), 
3m and 2.4m, 1.8m and 1.6m, and 4.2m and 2.3m in Figure 8-(c), and finally 7m and 1.8m, 2.4m and 1.8m, 
and 6m and 2.5m in Figure 8-(d). 
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(a) (b) 

(c) (d) 
Figure 8: Simulated test case 4: Medium rain at noon 

 
In the final testing scenario of Figure 9, the weather conditions remain as previously: medium rain at noon. 
We see that the performances of LeGO-LOAM and ORB-SLAM are very close, and in some cases the 
instantaneous position error of LeGO-LOAM exceeds that of ORB-SLAM. Fusion mechanism is able to 
achieve greatest accuracy in terms of overall translational error in three out of the four-time instances. 
More specifically, LeGO-LOAM, proposed Fusion and ORB-SLAM achieved maximum (instantaneous and 
overall) translational errors, respectively, equal to: 4.1m and 2.2m, 1.5m and 1.6m, and 2m and 2m in 
Figure 9-(a), 6m and 2.4m, 2.5m and 1.6m, and 2m and 2m in Figure 9-(b), 6.5m and 2m, 1.5m and 1.65m, 
and 2m and 1.35m in Figure 9-(c), and finally 4.9m and 1.7m, 1 m and 1.35m, and 3.4m and 1.6m in Figure 
9-(d). 
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(a) (b) 

(c) (d) 
Figure 9: Simulated test case 5: Medium rain at noon 

 
The extracted videos can be found here:  

https://drive.google.com/drive/folders/10scWjwdJtUYlBf9MO09QCG0tyZvvg13m?usp=sharing  

2.1.4 Evaluation studies with model compression acceleration  

In order to evaluate multimodal fusion, we utilize SqueezeDet as a solution for 2D object detection and 
pointpillar as a solution for 3D object detection. The evaluation is also performed using model 
compression and acceleration techniques also presented in D3.1 

SqueezeDet is a fully convolutional detection networks presented by Wu et al.5, consisting of a feature-
extraction part that extracts high dimensional feature maps for the input image, and ConvDet, a 

 
5 B. Wu, F. Iandola, P. H. Jin, and K. Keutzer, “SqueezeDet: Unified, Small, Low Power Fully Convolutional Neural Networks for 
Real-Time Object Detection for Autonomous Driving,” IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. Work., vol. 2017-
July, pp. 446–454, 2017. 
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convolutional layer to locate objects and predict their class. For the derivation of the final detection, the 
output is filtered based on a confidence index also extracted by the ConvDet layer.  

Figure 10 presents the overall architecture of the deep networks, the convolutional volume kernel shapes 
and the feature tensor shapes. 

As it can be observed from Figure 10, the feature-extraction (convolutional) part of SqueezeDet is based 
on SqueezeNet which is a fully convolutional neural network that employs a special architecture that 
drastically reduces its size while still remaining within the state-of-the-art performance territory. Its 
building block is the "fire" module that consists of a "squeeze" 1×1 convolutional layer with the purpose 
of reducing the number of input channels, followed by 1×1 and 3×3 "expand" convolutional layers that 
are connected in parallel to the "squeezed" output. SqueezeNet consists of 8 such modules connected in 
series.  

 
 

Figure 10: SqueezeDet architecture. 
 
3D object detection from LIDAR point clouds is mainly a data-driven task due to the lack of apparent 
structure in the data. Pointpillars 6  proposed a novel encoder that utilizes PointNets to learn a 
representation of point clouds organized in vertical columns (pillars) presenting an accuracy of 74.31% in 
the same category.  

 
Figure 11: Pointpillars network overview 

 
6 A. H. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang, and O. Beijbom, “Pointpillars: Fast encoders for object detection from point 
clouds,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., vol. 2019-June, pp. 12689–12697, 2019. 
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The architecture of PointPillars consists of three stages as depicted in Figure 11. The first stage transforms 
the point cloud into a pseudo-image. By grouping the points of the cloud into vertical columns, called 
pillars, that are positioned based on a partition of the plane, this stage summarizes the information of the 
points per pillar into 1D vectors. These vectors are rearranged appropriately to construct the pseudo-
image that will feed the next stage. The second stage consists of a feature extraction backbone network 
that provides a high-level representation. This representation is subsequently processed by the third stage 
which is the adopted object detector, producing 3D bounding boxes and confidence scores for the classes 
of interest. In terms of computational complexity, the backbone network of the second stage, consisting 
of a number of 2D convolutions and 2D transpose convolutions, requires more than of the involved 
operations and, thus, we will focus on this stage in the following for its acceleration. 

2.1.4.1 Dataset 

Both networks for 2D and 3D analysis were trained with the KITTI 3D object detection benchmark 
consisting of 7481 training images and 7518 test images as well as the corresponding point clouds, 
comprising a total of 80.256 labelled objects. In our study, three classes are mainly examined, cyclists, 
pedestrians and cars annotated with bounding boxes containing the objects in the 3D scene. 3716 
annotated Velodyne point cloud scenes were used for training and 3769 annotated Velodyne point cloud 
scenes were used for testing and validation. For the deployment and retraining of PointPillars, the 
OpenPCDet framework7 was employed. For the initial evaluation, pre-trained instances were used, while 
for the retraining, the Adam optimizer was employed with learning rate 𝑙0 = 0.003, weight decay rate 
𝐷1 = 10($ and a batch size 𝐵 = 4.  Training took place in an NVIDIA Geforce RTX 2080 with 16GB RAM 
and compute capability 7.5. Furthermore, for the Pointpillars network the detection accuracy was 
evaluated on NVIDIA Jetson TX2, while for the PV-RCNN network, due to model size, the detection 
accuracy was evaluated on the NVIDIA Geforce RTX 2080. The following two figures present the average 
precision for Car, Pedestian and Cyclist classes for PoinPillar and PV-RCNN respectively. 

 
Figure 12: PointPillars BEV Average Precision. The shown acceleration ratios of α = 10, 20, 30, and 40 on the 
targeted layers, correspond to a total acceleration of PointPillars by 5.6×, 7.6×, 8.6×, and 9.2×, respectively 
 

 
7 O. D. Team, “OpenPCDet: An Open-source Toolbox for 3D Object Detection from Point Clouds.” 2020. 
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Figure 13: PV-RCNN BEV Average Precision. The presented acceleration ratios of α = 10, 20, 30, and 40 on the 
targeted layers, correspond to a total acceleration of the BEV-Backbone block by 4.5×, 5.5×, 6.0×, and 6.3×, 
respectively 

 

 

Figure 14: KITTI dataset examples. 
 
Moreover, a data augmentation scheme was adopted, according to which the bounding boxes drift by 
𝑘) ∗ 150 and 𝑘* ∗ 150 pixels across the 𝑥-axis and the 𝑦-axis, respectively, where 𝑘) , 𝑘* ∼ 𝑈(0,1). A 
50%  probability is also assumed to flip an object. For the training of the SqueezeDet architecture, 
Stochastic Gradient Descent (SGD) was employed with the following values for the hyperparameters 
(determined via experimentation); batch size 𝐵 = 8, learning rate 𝐿𝑅 = 10(/, with a weight decay rate 
𝐷1 = 10(/, a learning rate decay rate of 𝐷23 = 2 ∗ 𝐿𝑅/𝑁4, number of steps 𝑁5 = 3 × 𝑁&0  and a dropout 
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rate of 50%, over a total of 𝑁4 = 300 epochs. Training and testing took place in an NVIDIA GeForce GTX 
1080 graphics card with 8GB VRAM and compute capability 6.1 in a Intel(R) Core(TM) i7-4790 CPU @ 
3.60Hz based system with 32GB of RAM. 

In all cases, training took place with a data augmentation scheme where the bounding boxes drift by pixels 
across the x-axis and pixels across the y-axis, where. A probability is also assumed to flip the object. For 
each detection, the Intersection Over Union (IOU) score is computed as the ratio of area of intersection 
to the area of union between the predicted and ground-truth bounding boxes. A true positive occurs when 
IOU and the predicted class is the same as the ground-truth class. A false positive occurs when IOU or a 
different class is detected, meaning that unmatched bounding boxes are taken as false positives for a 
given class. Precision, recall and mean average precision (mAP) are subsequently calculated8. 

2.1.4.2 Metrics 

For each detection, the Intersection Over Union (IOU) score is computed as the ratio of area of 
intersection to the area of union between the predicted and ground-truth bounding boxes. A true positive 
occurs when IOU> 0.5 and the predicted class is the same as the ground-truth class. A false positive 
occurs when IOU< 0.5 or a different class is detected, meaning that unmatched bounding boxes are taken 
as false positives for a given class.  

The official KITTI evaluation detection metrics include bird eye view (BEV), 3D, 2D, and average orientation 
similarity (AOS). The 2D detection is done in the image plane and average orientation similarity assesses 
the average orientation (measured in BEV) similarity for 2D detections. The KITTI dataset is categorised 
into easy, moderate, and hard difficulties, and the official KITTI leaderboard is ranked by performance on 
moderate. For the sake of self-completeness, easy difficulty refers to a fully visible object with a minimum 
bounding height box of 40px and max truncation of 15%, moderate difficulty refers to a partially occluded 
object with a minimum bounding box height of 25px and max truncation of 30% and hard difficulty refers 
to a difficult to see an object with a minimum bounding box height of 40px and max truncation of 50%. 
Each 3D ground truth detection box is assigned to one out of three difficulty classes (easy, moderate, 
hard), and the used 40-point Interpolated Average Precision metric is separately computed on each 
difficulty class. It formulated the shape of the Precision/Recall curve as  

 AP|0 =
!
|0|
∑2∈0 𝜌45$62-(𝑟) (3) 

 averaging the precision values provided by 𝜌67&40"(𝑟)9. In our setting, we employ forty equally spaced 
recall levels,  

 𝑅/7 = {1/40,2/40,3/40,… ,1} (4) 
 The interpolation function is defined as  

 𝜌45$62-(𝑟) = max
28:28:2

𝜌(𝑟′) (5) 
 where 𝜌(𝑟) gives the precision at recall 𝑟, meaning that instead of averaging over the actually observed 
precision values per point 𝑟, the maximum precision at recall value greater or equal than 𝑟 is taken. 

 
8 D. M. W. Powers, “Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation,” pp. 
37–63, 2020. 
9 A. Simonelli, S. R. Bulo, L. Porzi, M. L ́opez-Antequera, and P. Kontschieder, “Disentangling monocular 3d object detection,” in 
Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 1991–1999 
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2.1.4.3 Acceleration 

We apply the detection models in a "full-model" acceleration scenario. It involves accelerating multiple 
(or all) convolutional layers of the original models and measuring the achieved performance of the 
accelerated networks. 

It is noted, here, that, although full-range acceleration depends heavily on the performance of the 
technique used for the acceleration of each layer, it also involves experimentation over the strategy used 
for accelerating the layers and the involved fine-tuning (re-training) of the accelerated model. Here, we 
follow a stage-wise acceleration approach10 with each stage involving the acceleration (and fixing) of one 
or more layers of the network, and, subsequently, fine-tuning (i.e., re-training) the remaining original 
layers. The starting point for each stage is the accelerated and fine-tuned version of the previous stage. 
The process begins with the original network and it is repeated until all target layers are accelerated. For 
fine-tuning and performance assessment, we use the training and validation datasets from KITTI, as 
previously explained. Integrating the accelerated version corresponds to the utilization of weights that 
have been accordingly processed with the proposed in D3.1 weight sharing approaches.  

In our experiments, we apply the VQ and DL weight-sharing techniques to the PontPillars model, targeting 
the convolutional layers, and measuring the performance drop induced by the acceleration, compared to 
the original networks. The reported acceleration ratios are defined as the ratio of the original to the 
accelerated computational complexities, measured by the number of multiply-accumulate (MAC) 
operations. 

PointPillars is a fully convolutional network with its feature-extraction part (both 2D and transposed 
convolution operators) being responsible for 97.7%  of the total MAC operations required. In total 
Pointpillars network encompasses 4.835 × 108 parameters and require 63.835 × 109 MACs. For a good 
balance between acceleration and performance drop, we targeted the 2D convolutional layers of 
PointPillars (consuming approximately 47%  of the total MACs), as well as the 4 × 4  transposed 
convolutional layer of the network (responsible for 44.4% of the total MACs), depicted with the red blocks 
in Fig. 2.3(a). Acceleration was performed in 16  acceleration stages with each stage involving the 
quantization of a particular layer, followed by fine-tuning. Using acceleration ratios of 𝛼 = 10, 20, 30, and 
40 on the targeted layers, lead to a reduction of the total required MACs by 82%, 86%, 88%, and 89%, 
or equivalently, to total model acceleration of PointPillars by 5.6 ×, 7.6 ×, 8.6 ×, and 9.2 ×, respectively. 

2.1.4.4 Fusion 

A late fusion strategy takes place combining 2D driven detections and 3D driven detections.  Initially, 3D 
bounding boxes are projected upon the 2D plane and converted to 2D bounding boxes. To fuse 2D and 
3D measurements a non-maximal suppression11 driven approach takes place redefining the bounding 
boxes on the 2D space. Afterwards, to define vehicle range measurements 2D projects are matched to 3D 
points of the point cloud. Subsequently, each 3D point of the point cloud [xi, yi, zi] is projected upon the 
3D image.  

The 3D bounding box is described by its center 𝑇 = [𝑡) , 𝑡* , 𝑡:]' , dimensions 𝐷 = [𝑑) , 𝑑* , 𝑑:] , and 
orientation 𝑅(𝜃, 𝜙, 𝛼) where 𝜃 is the azimuth, 𝜙 is the elevation and 𝛼  is the roll angles. Given the pose 

 
10 J. Cheng, J. Wu, C. Leng, Y. Wang, and Q. Hu, “Quantized cnn: A unified approach to accelerate and compress convolutional 
networks,”IEEE Transactions on Neural Networks and Learning Systems, vol. 29,no. 10, pp. 4730–4743, 2018. 

11 Rothe, Rasmus, Matthieu Guillaumin, and Luc Van Gool. "Non-maximum suppression for object detection by passing 
messages between windows." Asian conference on computer vision. Springer, Cham, 2014. 
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of the object in the camera coordinate frame (𝑅, 𝑇) ∈ 𝑆𝐸(3) and the camera intrinsics matrix 𝑅34;&
(=) , the 

transformation matrix 𝑃34;&
(6)  the projection of a 3D point 𝑋% = [𝑋, 𝑌, 𝑍, 1]'  in the object's coordinate 

frame into the image 𝑥 = [𝑥, 𝑦, 1]'  is:  

𝑥	 = 		 𝑃06;$
(4) ∗ 	𝑅06;$

(7) 	 ∗ 	𝑋 
 

 
Figure 15: Fusion pipeline 

 
The popular NMS algorithm is sequential in nature. At each iteration 𝑖, it selects the top scoring proposal 
𝑃(𝑖)  from the set 𝒮  and removes all proposals in 𝒮 − 𝑃(𝑖)  which have an overlap 𝑜  greater than a 
threshold 𝑡. The complexity of each iteration is linear in the size of set 𝒮.  

 

 
Figure 16: NMS algorithm 
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2.1.4.5 Results 

This experiment aims to demonstrate the effectiveness of the multimodal fusion. Table 3 presents the 
average precision metrics for class car for image and LIDAR modalities and the fusion of both. The 
comparison is performed between the original networks and their accelerated versions either with the 
Vector Quantization or the Dictionary Learning based methods. All methods were compared with the Kitti 
Tracking dataset route12 number #8. Furthermore, three difficulty levels are taken into account, namely 
Easy, Hard and Moderate. Their characteristics are presented in the Table 2 

 
Table 2: KITTI difficulty levels 

 
 
As Table 3 reveals both image and LIDAR detectors and their fusion exhibit equivalent accuracies. 
However, applying the VQ acceleration strategy for acceleration factor equal to 10 significantly 
deteriorates the image detector with an accuracy drop from 76% to 63% for VQ and 73% for DL. For the 
same acceleration level the LIDAR detector seems not to be affected. Yet the fusion of both modalities 
maintains the average precision for accelerated networks nearly at the same level as the original network. 

 
Table 3: Evaluation study results 

 
#Route 
ID 

Object 
Difficulty 

Image   LIDAR   Fusion   

  
Original VQ10 DL10 Original VQ10 DL10 Original VQ10 DL10 

0008 Easy 0.710 0.656 0.720 0.744 0.747 0.706 0.747 0.747 0.708 
 

Moderate 0.769 0.637 0.734 0.766 0.765 0.756 0.763 0.762 0.756 
 

Hard 0.748 0.616 0.681 0.767 0.761 0.758 0.763 0.751 0.757 

 
The following figure presents a visual example of original and accelerated versions of image lidar and 
fusion driven car detections in a highway scene. The red boxes correspond to image detection, green 3D 
boxes to lidar detection, blue boxes to fusion of modalities and yellow boxes to groundtruth data. Even 
though the car on the left is clearly visible , the image based object detector fails in both cases and the 
reason could be that part of the car is hidden by the median strip.  However the car is detected by LIDAR 
based detector and the fusion of modalities method.  

 
12 Geiger, A., Lenz, P., Stiller, C., &amp; Urtasun , R. (n.d.). The Kitti Vision Benchmark Suite : Tracking Dataset. The Kitti Vision 
Benchmark Suite. Retrieved August 11, 2022, from http://www.cvlibs.net/datasets/kitti/eval_tracking.php 
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Figure 17: Detection example in highway scene 
 

2.2 Semantic Data integration 

This Section capitalizes on the previous approach of “early” fusion of selfish sensor agents and presents a 
vertical AI mechanism based on a novel semantic data integration framework for monitoring and 
safeguarding the ergonomics of human operators during a collaborative assembly task in an automotive 
manufacturing environment.  The analysis outputs, which are not the raw sensor measurements as 
previously, are fed to an ontology-based semantic Knowledge Graph (KG) (which defines the set of 
incentives) through the flexible semantic data integration framework of CASPAR, already being deployed 
in various domains. 

Semantic data integration (also known as “semantic data fusion”) is the process of blending data from 
diverse and possibly heterogeneous sources, by employing a data-centric architecture built upon a 
semantic model13. The latter is typically based on RDF (Resource Description Framework)14, a W3C 
standard for knowledge representation on the Web that represents resources as subject-predicate-object 
triples. 

RDF-based semantic models are called ontologies and are stored in triplestores, which are special 
databases for the storage and retrieval of RDF triples. The ability to easily import and harmonise 

 
13 https://en.wikipedia.org/wiki/Semantic_integration 
14 https://www.w3.org/RDF/ 
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heterogeneous data from multiple sources and interlink it as RDF statements into an RDF triplestore is 
essential for many knowledge management solutions running “on-top” of the semantic model. In 
addition, being the backbone of semantic technologies, RDF enables the inference of new facts from the 
existing data as well as the enrichment of the available knowledge by accessing Linked Open Data (LOD) 
resources available on the Web. Figure 18 gives an overview of the process of semantic integration. The 
semantic model is typically initially empty and contains only the schema of the application domain, 
namely, definitions of the basic concepts and interrelationships. 

 
Figure 18: Overview of the process of semantic data integration. 

 
The input to the semantic model can be either raw data (e.g., sensor measurements) or the result from 
analysing raw data (e.g., objects detected by a computer vision module). The result of the semantic 
integration process is a semantic knowledge graph (KG), i.e., a semantic model populated with the input 
data that delivers a unified view of the available information to the end-user. And various applications can 
run on-top of the semantic model, like, e.g., analytics, predictions, and rule-based decision support. 

Within the context of CPSoSaware T4.5, we deployed a semantic data integration framework for ingesting 
outputs from other analysis components into a uniform semantic model. We investigated two application 
domains, coinciding with the two use cases in the project: automotive and manufacturing. For each case, 
we created an initially empty semantic model and a respective semantic data integration infrastructure 
for populating the model with instance data from other CPSoSaware components. CTL’s proprietary 
semantic data integration framework, called CASPAR15, was used in both use cases, and was extended 
accordingly, in order to satisfy the respective needs of each domain. Moreover, for both use cases, we 
developed domain ontologies based on the SSN/SOSA16 W3C recommendation for representing sensors, 
observations, samples and actuations. The following subsections present in more detail the work 
conducted in each of the two use cases. 

 
15 https://caspar.catalink.eu/ 
16 W3C Recommendation 19 October 2017: http://www.w3.org/ns/sosa/ 
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2.2.1 Automotive Pillar 

Within the automotive pillar, we focused on monitoring (a) the system health, and, (b) the driver’s state 
during a driving session, and, thus, deployed the system displayed in Figure 19. 

 
Figure 19: Overview of the system architecture for the automotive pillar 

 
Adopting the microservice methodology17, we defined a set of independent, replicable services that 
collaboratively fulfil the system’s functionality. For the communications among services, we deployed 
RabbitMQ18, a popular open-source message broker that is scalable and industry-ready. 

The system components in the monitoring layer periodically collect and analyse data related to the driver, 
the vehicle and its surroundings. The following monitoring components are currently integrated: 

Odometry Algorithms (Direct Sparse Odometry - DSO19, LeGO-LOAM20, Cooperative Localization - CL), 
calculating the Absolute Trajectory Error (ATE) and the Relative Pose Error (RPE). 

Driver Monitoring System (DMS) capturing frontal facial images of the driver to assess fatigue levels based 
on the activity of the eyes. The driver’s drowsiness is measured based on two metrics, the Eye Aspect 
Ratio (EAR)21 and the PERcentage of Eye CLOSure (PERCLOS)22. 

Occupancy Factor (OF), which is an empirical metric, extracted by analysing the point cloud of the scene 
that has been acquired by the LiDAR device. It indicates how “clear and open” the road is beyond the 
driver’s field of view. 

 
17 S. Newman, “Building microservices: designing fine-grained systems” O'Reilly Media Inc, 2015. 
18 https://www.rabbitmq.com/ 
19 J. Engel, V. Koltun, and D. Cremers, “Direct sparse odometry” IEEE transactions on pattern analysis and machine intelligence, 
vol. 40(3), pp. 611-625, 2017. 
20 T. Shan and B. Englot, “Lego-loam: Lightweight and ground-optimized LiDAR odometry and mapping on variable terrain” In 
2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE Press, Oct. 2018, pp. 4758-4765. 
21 F. You, X. Li, Y. Gong, H. Wang, and H. Li, “A real-time driving drowsiness detection algorithm with individual differences 
consideration” IEEE Access, vol 7, pp. 179396-179408, 2019. 
22 D. F. Dinges and R. Grace, “PERCLOS: A valid psychophysiological measure of alertness as assessed by psychomotor vigilance” 
US Department of Transportation, Federal Highway Administration, Publication Number FHWA-MCRT-98-006, 1998. 
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The modularity provided by the microservice approach, coupled with the straightforward system design, 
enables the integration of additional third-party data sources (e.g., weather or traffic condition reports) 
with minimum effort. 

The outputs and observations produced by the monitoring layer are communicated to the semantic data 
fusion layer via a dedicated RabbitMQ exchange. At this stage, they are mapped to ontology concepts, 
resulting in a unified KG, which is instantiated in an RDF triplestore by the CASPAR component. 

The following subsections present the two scenarios we investigated within the context of the Automotive 
Use Case, which were also presented in more detail at the 15th Int. Conf. on Advances in Semantic 
Processing (SEMAPRO 2021)23. 

2.2.1.1 Scenario #1: Evaluating the Robustness of Odometry Algorithms 

In the first scenario we rely on an end-to-end testing framework, based on the CARLA open-source urban 
driving simulator24 , for generating synthetic sensory data and evaluating the three aforementioned 
odometry algorithms against different weather and lighting conditions. Each algorithm uses a different 
modality and our purpose is to study the effect of the changing conditions on the efficiency of each 
algorithm. Based on the architecture described above, ATE and RPE measurements are sent via the 
message bus to the CASPAR semantic data fusion framework and are ingested into the KG. Indicatively, 
1226 observations were submitted for a driving simulation of 126 seconds. Figure 20 displays an excerpt 
of the observations. 

 
Figure 20: Excerpt of the ATE and RPE observations 

 
CASPAR converts the inputs into RDF-compatible representations via the use of user-defined mappings, 
which associate input data fields to semantic entities (concepts, relationships, etc.). The following listing 
displays the mapping for converting the JSON excerpt in Figure 20 into SPARQL queries that populate the 
semantic model with the appropriate instance data. 

{ 
  "templates": [ 

 
23 Kontopoulos, E. et al.: An Extensible Semantic Data Fusion Framework for Auton-omous Vehicles. In: 15th Int. Conf. on 
Advances in Semantic Processing (SEMAPRO 2021), pp. 5-11. IARIA (2021). 
24 A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “CARLA: An open urban driving simulator” In Conference on robot 
learning (PMLR), Oct. 2017, pp. 1-16. 



 
 

 

31 

    { 
      "prefixes": [ 
        { 
          "prefix": "rdf", 
          "namespace": "http://www.w3.org/1999/02/22-rdf-syntax-ns#" 
        }, 
        { 
          "prefix": "rdfs", 
          "namespace": "http://www.w3.org/2000/01/rdf-schema#" 
        }, 
        { 
          "prefix": "xsd", 
          "namespace": "http://www.w3.org/2001/XMLSchema#" 
        }, 
        { 
          "prefix": "owl", 
          "namespace": "http://www.w3.org/2002/07/owl#" 
        }, 
        { 
          "prefix": "sosa", 
          "namespace": "http://www.w3.org/ns/sosa/" 
        }, 
  { 
          "prefix": "cpsos", 
          "namespace": "http://www.example.com/cpsosaware#" 
        }   
      ], 
      "individuals": [ 
        { 
          "path": "observations.[*]", 
          "namespace": "http://www.example.com/cpsosaware#", 
          "classes": [ 
            "sosa:Observation" 
          ], 
          "properties": [ 
   { 
              "predicates": [ 
                "sosa:observedProperty" 
              ], 
              "object": { 
                "path": "observations.[*].property", 
              } 
            }, 
   { 
              "predicates": [ 
                "sosa:madeBySensor" 
              ], 
              "object": { 
                "path": "observations.[*].source", 
              }  
   }, 
   { 
              "predicates": [ 
                "sosa:hasResultTime" 
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              ], 
              "object": { 
                "path": "observations.[*].timestamp", 
    "datatype": "xsd:dateTime" 
              }  
   }, 
   { 
              "predicates": [ 
                "sosa:hasSimpleResult" 
              ], 
              "object": { 
                "path": "observations.[*].result", 
    "datatype": "xsd:decimal" 
              }  
   } 
          ], 
          "update_on": [] 
        }, 
  { 
          "path": "observations.[*].property", 
          "namespace": "http://www.example.com/cpsosaware#", 
          "classes": [ 
            "sosa:ObservableProperty" 
          ], 
          "properties": [ 
   { 
              "predicates": [ 
                "rdfs:label" 
              ], 
              "object": { 
                "path": "observations.[*].property" 
              } 
            } 
          ], 
          "update_on": [ 
            { 
              "predicates": ["rdfs:label"], 
              "object": { 
                "path": "observations.[*].property" 
              } 
            } 
          ] 
        }, 
  { 
          "path": "observations.[*].source", 
          "namespace": "http://www.example.com/cpsosaware#", 
          "classes": [ 
            "sosa:Sensor" 
          ], 
          "properties": [ 
   { 
              "predicates": [ 
                "rdfs:label" 
              ], 
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              "object": { 
                "path": "observations.[*].source" 
              } 
            } 
          ], 
          "update_on": [ 
            { 
              "predicates": ["rdfs:label"], 
              "object": { 
                "path": "observations.[*].source" 
              } 
            } 
          ] 
        }        
      ] 
    } 
  ] 
} 

The process of ontology population corresponds to the generation of new individuals (nodes) and 
properties (edges) in the KG. In a nutshell, mappings are JSON-structured files composed of definitions of 
templates, individuals and properties: 

A template serves as the mechanism for focusing on specific parts of the input.  

A template contains a set of individuals, which declare the nodes that need to be created or updated in 
the KG. From the perspective of using an ontology as the KG schema, an individual is an instance of one 
or more classes. 

A property indicates a desired edge that needs to be created in the KG, connecting a node with another 
node or with a literal value. In ontology terms, a property may correspond to an object property (i.e., 
relating two instances with each other) or a datatype property (i.e., relating an instance to a literal value). 
Properties in mappings are defined by a set of predicates, meaning the relationship types of the ontology, 
and objects, which indicate the value that will be given to the property. Therefore, objects, which are also 
declared as JSON paths, can either point to literal values in the input JSON or to other individuals. 

The optional update_on field allows associating newly arrived knowledge with nodes already existing in 
the KG.  

Figure 21 illustrates the representation of the sample observations from Figure 20 in Graffoo format25 
fused inside the KG, after the process of ontology population is completed by CASPAR.  

 
25 https://essepuntato.it/graffoo/ 
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Figure 21: Representation of the sample observations in the KG 

 
After the population of the KG is complete, useful insights regarding the performance of the algorithms 
can be extracted. Figure 22 displays such an example, where the LiDAR-based odometry algorithm (LeGO-
LOAM) presents better results with regards to RPE and seems to be more robust, constituting thus a better 
candidate in conditions similar to the specific driving simulation session. 

 
Figure 22: Performance comparison of LeGO vs DSO for a simulation session. 

2.2.1.2 Scenario #2: Calculating Risk Levels during a Driving Session 

In the second scenario, our objective is to inform the driver about potential risks during a driving session. 
We focus on two factors: The driver’s drowsiness and the free available space of the road. For this 
purpose, two components have been developed: (a) the Driver Monitoring System (DMS) component, 
and (b) the Occupancy Factor Estimation (OFE) component. For the evaluation of our implementation, we 
integrated the DMS with CARLA, whose spectacularly photorealistic graphics provide an immersive driving 
experience. The simulator provides the flexibility to design a variety of driving scenarios under different 
states of driver’s drowsiness and different conditions of the road (e.g., the state of the traffic), in a safe 



 
 

 

35 

environment for the operator who tests the implementation. The setup of the integration uses the 
Logitech G29 steering wheel for enhancing the driving sense, as well as a static web camera that captures 
the face of the driver in real-time. 

Similar to the previous scenario, the DMS and OFE modules submit their observations, namely the 
PERCLOS and OF measurements, to CASPAR via RabbitMQ. However, an upgrade compared to scenario 
#1 entails a set of rules for calculating the risk levels during the simulated driving session (see Table 4).  

 
Table 4: Set of rules for calculating the risk level. 

 
 PERCLOS < 0.25 PERCLOS >= 0.25 & <0.7 PERCLOS >= 0.7 

OF > 280 Low risk (1) Be aware (2) High risk (3) 

OF <= 280 & >200 Low risk (1) Be aware (2) High risk (3) 

OF <= 200 Be aware (2) High risk (3) High risk (3) 

 

Risk level 1 corresponds to a “low risk” driving situation, where the driver is focused and drives carefully 
in a full open-eyed state (without any observed drowsiness). Moreover, the road is free from other 
vehicles, thus providing an unobstructed area for driving. On the other hand, risk level 3 corresponds to a 
“high risk” driving situation where the driver demonstrates intense drowsiness, as identified by the facial 
analysis of the DMS component, with intense drowsiness and/or the unobstructed area of the road is 
restricted (due to obstacles, a lot of traffic, small-ranged road, etc). 

After the KG is populated through CASPAR, the above ruleset is executed in the form of a respective 
SPARQL query “on-top” of the KG. The result is a risk level report, as illustrated in Figure 23. Outputs like 
this can constitute parts of reports, e.g., after traffic accidents.  

 
Figure 23: Graph indicating the risk levels during a driving session. 

2.2.2 Manufacturing Pillar 

The scenario we examined in the context of the Manufacturing Use Case revolves around a collaborative 
application in an automotive assembly line and was presented at the Industry Track of the 2022 Extended 
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Semantic Web Conference (ESWC’22)26. According to the scenario, a human operator performs manual 
assembly operations on a windshield handled and moved by a robot before assembly on the chassis. Our 
overarching aim is to protect the operators from injuries and muscle strain and to reduce their body’s 
strain by performing biophysics assessment for ergonomic optimization. Towards this end, we deploy a 
semantic data integration framework for monitoring the human operators’ safety and well-being as they 
are performing the requested operations.  

The proposed implementation focuses on adjusting the position of the windshield according to the 
operator’s ergonomics and providing personalised suggestions and warnings to the operator based on 
their postures and the way that they use their body to perform an operation, in order to avoid long-term 
musculoskeletal problems and other health and/or safety risks. The foreseen benefits of our solution are: 
(a) improvement of the workers’ wellbeing at work; (b) mitigation of risks and accidents; (c) flexibility of 
workplace management. 

2.2.2.1 Setup and Deployment 

A set of IoT sensors submit their measurements to respective analysis components: (a) footage from static 
cameras analysed by computer vision components for estimating the operator’s anthropometrics 
parameters (i.e., posture); (b) wearables (inertial measurement units – IMUs, i.e., accelerometers and 
gyroscopes) for motion analysis and body tracking. The analysis outputs (and not the raw sensor 
measurements) are then fed to an ontology-based semantic Knowledge Graph (KG) through CASPAR. Our 
overall aim is to perform a proactive ergonomics optimization of the equipment. Figure 24 gives a 
diagrammatic overview of the workflow. Note that only the higher-level analysis outputs are stored and 
not the raw data itself, preventing issues of performance and storage costs. 

The deployment is currently being tested in a virtual environment (i.e., simulator designed in Unity27) and 
will soon be tested in a real factory setting at CRF premises. The simulation involves three static RGB 
cameras located in three different areas of the working environment monitoring the "human’s" (i.e., a 
digital human model) actions, while he collaborates with a robot to perform a specific task together.  

 
Figure 24: Workflow overview. 

 
Figure 25 illustrates a set of snapshots from the three different views in the simulated environment. A 
pose estimation algorithm extracts in real time the posture landmarks and a confidence rate for each 
estimation. The outputs are fed into the ontology via semantic data integration, while a set of rules 
determine the camera with the best view. Based on this, our next aim will be to calculate the RULA (Rapid 
Upper Limb Assessment) score, based on the joint angles. RULA is a well-established metric for calculating 
the risk of musculoskeletal loading within upper limbs and neck. 

 
26 https://2022.eswc-conferences.org/wp-content/uploads/2022/05/industry_Kontopoulos_et_al_paper_205.pdf 
27 Unity homepage: https://unity.com/ 
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Figure 25: Simulated environment snapshot. 

 
The same pipeline will be adopted in the real-life industrial environment in the coming months, with 
camera-based estimations from computer vision algorithms now coupled with body joints’ estimation 
based on the IMU sensors in online monitoring. 

2.2.2.2 Input Data 

The pose estimation algorithm extracts posture landmarks and confidence rates roughly at a per second 
rate and generates JSON outputs in the following format: 

{ 
"timestamp": "02-09-2021 02:11:09.000", 
"source": "backView", 
"results": [ 
{ 

"property": "landmark_1", 
"result": 0.86293 

}, 
{ 

"property": "landmark_2", 
"result": 0.89567033333333335 

}, 
... 
{ 

"property": "avg_cr", 
"result": 0.70686023555555555 

} 
] 

} 

The source field takes one of three values, backView, frontView, sideView, while a set of 25 landmarks 
on the human operator’s body are detected, along with respective confidence rates and an overall 
average confidence rate for the whole set of landmarks per timestamp.  

Similarly, to what has already been demonstrated above, the generated JSON outputs are fed to the 
CASPAR semantic data integration framework, which populates the underlying semantic model 
accordingly, via suitable SPARQL update queries.  

2.2.2.3 Semantic Model 

Figure 26 below displays in Graffoo notation the core semantic model, which extends the W3C-
recommended SOSA/SSN, similarly to what was also demonstrated for the first CPSoSaware use case. 
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Figure 26: Core semantic model for the Manufacturing Use Case 

 
Below is a description of the core concepts included in the semantic model: 

● AnalysisComponent (and its specialisations) represents the components receiving the raw data 
measurements (e.g., camera feed and measurements from wearables), performing the respective 
analyses, and generating the results. 

● AnalysisOutput represents the “observations”, i.e., the outputs generated by the analysis 
components, accompanied by a respective timestamp. 

● AnalysisResult represents the actual results from the analysis, i.e., values and units (if 
applicable). 

● PoseEstimationProperty represents the observable property that is relevant to estimating the 
correctness or not of the human operator’s pose. 

2.2.2.4 Semantic Data Integration 

Through the use of a specified mapping, CASPAR populates the core semantic model with instance data 
coming from the pose estimation algorithm. Figure 27 illustrates a sample instantiation representing the 
JSON excerpt presented in Subsection ‘Input Data’. 

 
Figure 27: Sample instantiations 
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2.2.2.5 Results 

This subsection presents insights generated by running respective SPARQL queries on top of the populated 
semantic model. 

1. Retrieve the Average Confidence Rate (CR) per Source 
SPARQL Query 

 

Result 

 

2. Evolution of Average CR per Source for the Whole Session 

SPARQL Query 
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Result 

 

3. Retrieve the Source with the Best CR per Timestamp 
SPARQL Query 

 

Result (for the first 8 timestamps) 
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4. Indicate low CRs based on User-defined Threshold 
SPARQL Query 

 

Result (for avgCR < 0.3, threshold specified by user) 

 

5. Retrieve Average Landmark Values for Upper Torso per Source 
SPARQL Query 
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Result (for landmarks 2 to 8, corresponding to upper torso) 
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3 Model-Based design and re-design  

In this section we explain CPSoSaware model-based design and redesign methodology, present DSM 
model, and show an application of CPSoSaware model-based design and redesign methodology to DSM 
model.  

3.1 Model-based design and re-design methodology 

CPSoSaware model-based design and re-design methodology is based on the HW-SW partitioning 
optimization approach developed in Task 4.1 and described in detail in deliverables D4.1 and D4.6. This 
approach contains several phases that are presented in Figure 28. 

 
Figure 28: HW-SW partitioning optimization approach 

 

In the context of Task 4.6 we extended simulation methods (Phase 4 and Phase 6 of partitioning 
optimization approach) to handle various high-level system and SoS metrics such as the accuracy of AI 
models implemented as corresponding application code in multiple scenarios. We also extend 
optimization methods (Phase 5) to support multi-scenario optimization that enables the re-design phase. 
Multi-scenario optimization allows us to determine a set of system models that are optimal in different 
scenarios under different situational goals/objectives that also may change from scenario to scenario. The 
support of multiple scenarios is also required in the modelling phase, so that the concise modelling 
methodology described in D4.1, D4.6 is extended to support scenario definitions on the functional level. 
This support is enabled by applying stereotype <scenario> to the functional block and the part used for 
the definition of different scenarios. Once <scenario> part is present in the functional model, the concise 
modelling plugin automatically translates it to a multi-scenario optimization model and runs optimization 
sequentially for each scenario with respect to the situational goal specific for the scenario. The obtained 
optimal solutions are then translated back to collections of Pareto optimal models, where each collection 
relates to the corresponding scenario. Finally, optimal models are analysed by an expert and a re-design 
strategy is created. This strategy can be presented as a set of rules, where each rule defines the conditions 
when re-design decision should be triggered by CPSoS and which components should be 
commissioned/decommissioned in the re-design phase to enable smooth adaptation of CPSoS to changes 
in the environmental conditions. Resulting rules could be deployed to target CPSoS as part of AI 
component such as Knowledge Graph as described in the Section 2.2 above. AI component will determine 
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when environmental conditions change to meet the definitions of another scenario and then trigger the 
commissioning/decommissioning mechanism described in detail in D4.2/D4.3 to re-design target SoS and 
adopt it to the changing environment. 

3.2 DSM model 

In this section we present initial evaluation of driver monitoring system model (DSM) performed in Task 
4.4 and 5.1 and reported in deliverable D4.6, D5.1. The DSM solution uses a camera installed inside a car 
to monitor the face of the driver. Each frame of this camera is analysed, and facial landmarks are aligned. 
The position of these landmarks and their distance can be used to recognize whether the driver is yawning, 
or if his eyes are sleepy. Moreover, the pose of his head can also reveal information about the driver’s 
drowsiness level. The 2D facial landmark alignment method used in the algorithm is implemented with 
C++ in the open-source libraries DLIB and Deformable Shape Tracking (DEST), is used in several 
applications such as driver drowsiness detection, recognition of facial expressions, etc. The most 
challenging of these applications require fast processing of video frames. Therefore, the alignment of the 
facial landmarks in a single video frame has to be performed with the minimum possible latency without 
precision loss. The fast 2D facial landmark detection algorithm that has been presented by Kazemi and 
Sullivan where an Ensemble of Regression Trees (ERT) is used to estimate the position of the facial 
landmarks, has been adopted in the DSM runnables. The algorithms and the overall experiments on how 
to correctly design the runnables are presented in D4.6 and particular hardware and software runnables 
that have been developed based on OpenCL and/or HLS C/C++ code using High level Synthesis tools (for 
hardware) or OpenCL compilers (for software) presented in D5.1. The parameters of the ERT face 
alignment model are described in D4.6 in detail. The ones that affect the implementation of the HW 
kernels are listed in Table 5. From the description of the ERT parameters in this table it is clear that a trade-
off has to be made between accuracy and speed. Additionally, one should consider different conditions 
that affect accuracy of different ERT models as well as power consumption of corresponding HW kernels, 
that may affect other application and/or need to be considered in battery-low regimes. 

Table 5: ERT parameters customized for the DSM application 

Parameter 
Name 

Default 
value  

Experimentation 
in the range  

Description 

Cascade 
stages (Tcs) 

10 9-12 Fewer cascade stages result in faster shape 
estimation but with lower accuracy. However 
error floor prevents accuracy improvement if 
excessive cascade stages are added 

Trees (Ntr) 500 400-600 Fewer trees increase speed but reduce 
accuracy 

Tree depth 
(Td) 

5 4-6 Number of tree nodes is 2Td-1. Shorter tree 
depth (and consequently tree nodes) results 
in faster operation but with lower accuracy 

Reference 
pixels (Nc) 

600 400-800 This is the number of pixels that the sparse 
image consists of. Fewer reference pixels are 
expected to increase speed with accuracy 
penalty 
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3.2.1 ERT models developed 

Various models have been trained with the same Helen general purpose dataset. Table 6 shows the 
combinations tested and the training error exposed by the DEST training application that has also been 
ported to Ubuntu. A different application is used to evaluate a model using a test set of 300 photos, 
different from the Helen dataset. The details of these models are discussed in D4.6.  

Models M15 and M16 have been defined as combinations of various parameter values for the best 
accuracy and the highest speed, respectively. Since we did not have a dataset available with driver images 
and especially in nighttime lighting conditions, we defined three models called Dark0.3, Dark0.4 and 
Dark0.5 that have been trained from the Helen images again but after artificially darkening them during 
the training process.  

The ERT parameters with the default values were used but a dynamic range adaptation has been applied 
in grayscale to compress the pixel values to the 30%, 40% or 50% of their original range in the models 
Dark0.3, Dark0.4 and Dark0.5, respectively. For example, if the pixel intensity is initially between 0 and 
100, this intensity is linearly adapted to shorten the range between 0 and 30 in the Dark0.3 model. It is 
obvious that Dark0.3 has been trained with darker images while Dark0.5 is closer to the M0 model. The 
test error is worse than the other models. However, in a real car environment and nighttime drive it is 
expected that the behavior of the Dark0.* models may be better than several other models listed in Table 
6. 

Table 6: ERT models used, based on different ERT parameters 

 

3.2.2 Accuracy of the models  

Exhaustive experiments are described in D4.6 concerning the accuracy of the models listed in Table 7 
under different environmental conditions. Table 7 lists the conclusions about which models are more 
appropriate for certain combinations of driver gender/lighting conditions/mount position of the camera. 
The F1-score has been used to sort the model accuracy since this metric is a combination of precision and 
sensitivity. The male and female drivers in daytime conditions have been evaluated with the YawDD 
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dataset (camera mounted on the mirror or the dash). The nighttime is evaluated for the present, only with 
the 7 videos that we have developed. More exhaustive tests will be performed when the NYSEM dataset 
will be available. 

Table 7: Top-3 models with the highest accuracy in yawning measurement. 

Condition Model 
Male-Daytime-Dash M16, M8, M15 

Male-Daytime-Mirror Dark0.3, M8, Dark0.5 
Female-Daytime-Dash M12, M15, M16 

Female-Daytime-Mirror Dark0.3, M8, Dark0.5 
Male-Nighttime (from Table 5) M8, M16, M15 

 

3.2.3 Latency and power consumption 

The estimated power consumption of the models referenced in Table 7 is analyzed in Table 8 which shows 
the dynamic power consumption and in Table 9. Since we are interested in the power consumption of the 
kernels that are implemented in the PL system we get the total power dissipation, static and dynamic, by 
adding all the power estimations for the PL part and the results are listed in Table 10. As we can see the 
power consumption ranges between 2.665W (M16) and 2.905W (M15).  

Regarding the latency of each HW kernel implementation and its effect on the overall processing time 
needed by a single frame, the results are listed in Table 11. In the first row of Table 11 the latency of a 
single frame is shown, as it is measured from the software side with appropriate print messages. In the 
second row the HW kernel latency is listed as it is profiled using the XRT real time monitoring facilities 
that generate a runtime csv file (profile_summary.csv). Since it was not possible to migrate data pixel 
intensities using wide port and local BRAM in the same way we implemented migrate of the other HW 
kernel arguments, its latency was measured separately as shown in the last row of Table 11.  

Table 8: Dynamic power consumption of the HW kernels of the models referenced in Table 7. 
 

Model/ 
Power 

M0, M4, 
Dark0.3, 
Dark0.4, 
Dark0.5 

M8 M12 M15 M16 

Clocks 0.496W (10%) 0.498W (10%) 0.515W (11%) 0.515W (10%) 0.461W (10%) 

Signals 0.488W (10%) 0.510W (11%) 0.540W (11%) 0.561W (11%) 0.454W (10%) 

Logic 
0.369W (8%) 0.374W (8%) 0.399W (8%) 0.401W (8%) 0.350W (7%) 

BRAM 0.585W (12%) 0.584W (12%) 0.586W (12%) 0.604W (12%) 0.576W (12%) 

DSP 0.088W (2%) 0.089W (2%) 0.092W (2%) 0.088W (2%) 0.089W (2%) 

MMCM 0.097W (2%) 0.097W (2%) 0.097W (2%) 0.097W (2%) 0.097W (2%) 

PS 2.659W (56%) 2.659W (55%) 2.659W (54%) 2.659W (55%) 2.659W (57%) 
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Table 9: Static power consumption of the HW kernels of the models referenced in Table 7 
Model/ Power M0, M4, 

Dark0.3, 
Dark0.4, 
Dark0.5 

M8 M12 M15 M16 

PL 
0.638W 
(86%) 

0.638W 
(86%) 

0.639W 
(86%) 

0.639W 
(86%) 

0.638W 
(86%) 

PS 
0.100W 
(14%) 

0.100W 
(14%) 

0.100W 
(14%) 

0.100W 
(14%) 

0.100W 
(14%) 

 
Table 10: Total power dissipation of the PL part 

Model/ 
Power 

M0, M4, 
Dark0.3, 
Dark0.4, 
Dark0.5 

M8 M12 M15 M16 

PL 2.761W 2.79W 2.868W 2.905W 2.665W 
 
 

Table 11: Estimation of the single frame processing latency 

3.3 Evaluation of model-based design and re-design methodology 

3.3.1 System model and input data 

DSM application high-level system model is presented in Figure 29. This model is created using concise 
modelling extension of SysML28 described in detail in D4.1 and D4.6. The model consists of an Application 
block and a Software Block. The Application block includes itsScenario and itsModel part that used to 
describe different scenarios and different ERT models correspondingly. The itsScenario part has attributes 

 
28 https://www.omg.org/spec/SysML 

Model/Latencies M0 
model 

M4 
Model 

M8 
Model 

M12 
Model 

M15 
Model  

M16 
Model 

Dark0.3 
Model 

Dark0.4 
Model 

Dark0.5 
Model 

Notes 

Frame processing time 33.166 
ms 

34.301 
ms 

34.658 
ms 

38.629 
ms 

47.756 
ms 

29.314 
ms 

33.816 
ms 

37.717 
ms 

33.371 
ms 

1st 
Frame 

HW kernel 
Predict_Trees (XRT 
profile_summary.csv) 

2.33 
ms 

2.42 
ms 

2.37 
ms 

2.86 
ms 

2.90 
ms 

2.09 
ms 

2.26 
ms 

2.26 
ms 

2.40 
ms 

Worst 
Case 
(1st 
frame) 

Migrate pixel 
intensities (XRT 
profile_summary.csv) 

0.076 
ms 

0.149 
ms 

0.160 
ms 

0.151 
ms 

0.153 
ms 

0.145 
ms 

0.149 
ms 

0.149 
ms 

0.114 
ms 

Worst 
Case 
(1st 
Frame) 

Maximum supported 
frame rate 

30 fps 29 fps 28 fps 25 fps 20 fps 34 fps 29 fps 26 fps 29 fps  
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that characterize particular scenario such as gender of the driver (male/female), camera positions 
(dash/mirror) and light conditions (daytime /nighttime). In order to handle this part properly in the 
automatic model a translation process is performed by the concise plugin we apply <scenario> stereotype 
to this part. In total we have 8 different scenarios with different Id’s, that provided in excel table that is a 
part of concise model. 

  
Figure 29: Concise model of DSM application - design 

 

Excel table with different scenarios presented in Figure 30.  The itsModel part contains model name, 
scenario Id and Accuracy attributes. This part has an Excel table with corresponding data behind, where 
the Accuracy attribute represents an F1-score of corresponding models measured in the corresponding 
scenario (note that measurement performed not for all possible scenarios). The itsScenario and itsModel 
parts are connected by functional flow with attached constraint, meaning that the Scenario Id attribute 
of the model should be equal to the Id attribute of Scenario. 
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The Software block contains itsHWKernel part that represents our decision on optimal model. 
<optimized> stereotype on itsHWKernel part means that particular hardware kernel should be chosen by 
the optimization and multiplicity of itsHWKernel part that equal to 1 means that only one hardware kernel 
should be chosen in each particular scenario. The part is chosen from catalog that contains data on Latency 
(equivalent to the frame processing time in Table 11) and power consumption (see Table 10) of different 
ERT models. The Excel table representing this catalog is a part of the concise model and presented in 
Figure 31. 

 
Figure 30: Concise model of DSM application – scenario table 

 

 
Figure 31: Concise model of DSM application – hardware kernels catalog 

 
ItsModel part of the Functional block mapped to itsHWKernel part of the software block, meaning that 
the hardware kernel performs functions of the corresponding model. Constraints on the mapping required 
to ensure equality of the corresponding attributes in model and kernel.  

To neutralize the effect of the unit’s measurements on the optimization model, we need to normalize all 
the parameters of each ERT model and set them in the interval [0,1]. That way we fairly can priories the 
different criterions with weights, without being affected from higher values related with one of the 
criteria. In order to do this, we added additional attributes and constraints to the concise model. 
Attributes NormAccuracy of ItsModel part and attributes NormPower and NormLatency of itsHWKernel 
part are automatically calculated by formulas provided via corresponding constraints that are anchored 
to these parts (see Figure 29).  The following table describe the normalized power and latency parameters. 
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Table 12: Normalized latency and power consumption 

 

Besides the accuracy that measures the quality of the model, each of the models can be evaluated 
according to two other goals that are power consumption and latency. Optimization goals are modelled 
as Software block attributes with corresponding constraints that connects these attributes to the 
corresponding attributes of itsHWKernel part. Corresponding model presented in Figure 32. 

 
Figure 32: Concise model of DSM application – optimization goals 

3.3.2 Optimization model 

Based on high-level system model presented in Figure 29, concise application automatically creates a 
multi-scenario multi-objective optimization model that considers all three different goals (see Figure 32) 
recognized with each model according to the relevancy and importance we allocate to each goal. The 
more importance we choose to allocate to one goal, the better the goal our optimization model will 
choose in the sense of that goal; for example if power consumption has a higher priority, a more energy-
saving hardware kernel will be chosen. In addition, we included in the optimization model strict-bounds 
option (optimization constraints), that allows choosing the best model from only those models with 
parameters that perform better than the fixed bounds. For example, for each scenario we need to choose 
an optimal model from the models where the accuracy has a value above some threshold, otherwise DSM 
application does not fulfill its function and such design is meaningless. 

Below we present mathematical optimization model that automatically created from the concise model. 
We wish to find the optimal model/kernel according to three goals: accuracy, power consumption and 

Model/Latencies M0 M4  M8  M12  M15  M16 Dark0.3  Dark0.4  Dark0.5  

Power 0.0330 0.0330 0.0430 0.0698 0.08261 0 0.0330 0.0330 0.0330 

Latency  0.1044 0.1119 0.195 0.3861 0 0.0942 0.1759 0.0849 
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latency (we refer them here as goal 1, goal 2 and goal 3 respectively, so that goals are enumerated by 𝑗 =
1,2,3). We have 𝑘 = 1,… , 𝐾	 scenarios and our decision variables are 𝑥6 	 ∈ 	 {0,1} for each model/kernel 
𝑖 = 1,… , 𝐼. Thus, our optimization functions for second and third goal (power consumption and latency) 
could be modelled by the following formula: 

𝑚𝑖𝑛)	𝑓?(𝑥) =j𝑡6
?𝑥6

@

6A#

 

where by 𝑡6
?  we denote the normalized value of the goal 𝑗	 ∈ 	 {2,3} for the i’th model/kernel. In the case 

of the first goal, we are interested in model/kernel hat maximize the accuracy. Hence the appropriate 
formula is 

𝑚𝑎𝑥)	𝑓?(𝑥) =j𝑡6,C# 𝑥6

@

6A#

 

where by 𝑡6,C#  we denote the normalized value of the first goal (accuracy) for the i’th model/kernel in the 
scenario k. Alternatively, denoting by  𝑡6,C#  the minus of the normalized value of the first criterion for the 
i’th model/kernel and scenario, our objective functions turns into a minimization of the form 

𝑚𝑖𝑛)	𝑓?(𝑥) = ∑ 𝑡6,C
? 𝑥67

6A#   , for all  𝑗	 = 1,… ,3. 

Note that corresponding formulas in the OPL optimization language29  are create automatically from 
constraints presented in Figure 32.  

In order to get only one optimal model/kernel that fits our optimization goals for each specific scenario 
we optimization model includes constraint ∑ 𝑥67

6A# = 1 that automatically created from the multiplicity 
of  itsHWKernel part. These constraints ensures that optimization will choose the model 𝑖  so that its 
appropriate decision variable 𝑥6  will be equal to 1 in the optimal solution. In addition, we add a set of 
constraints to ensure that the optimized model/kernel will satisfy our fixed bounds: 

m
∑ 𝑠6,C

? 𝑥6@
6A# 	≥ 𝑏+?

∑ 𝑠6,C
? 𝑥6@

6A# 	≤ 	 𝑏D?
 for 𝑗	 = 1,… ,3, 

where by 𝑏+? , 𝑏D? ,	 we denote the fixed (lower and upper) bounds to which our model should satisfy and 

by 𝑠6,C
?  we denote the real (not normalized) value of the parameter 𝑗 for the i’th model/kernel in the 

scenario k. The sign of inequality depends by the type of bound (upper or lower) that we would like to 
apply to the system. In our case these means that we would like to have a model with accuracy that above 
some threshold and latency and power consumption that is below some threshold. 

To combine multi-objective optimization model into single-objective ILP (Integer Linear Programming) 
problem concise application add weight parameters to each optimization objective that define different 
priorities which optimization allocates to the different goals in order to find an optimized model/kernel 
that considers those priorities. This could be presented by the following formula 

  𝑓(𝑥) = 	∑ (𝑤? ∑ 𝑡6,C
? 𝑥67

6A#
E
?A# ),  

where 𝑤	is the relative weights vector, representing how much weight optimization allocates to each of 
the objectives. For the resulting single-objective ILP concise application further adds constraint 𝑘 = 𝑘F 

 
29 https://www.ibm.com/docs/en/icos/22.1.0?topic=opl-optimization-programming-language 
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where 𝑘F is a number of scenarios for which optimization should find optimal model/kernel. Resulting 
single-scenario single-objective ILP solved by CPLEX optimization solver30 for each scenario and for the 
different combinations of weights for the different objectives. 

3.3.3 Results 

Following tables summarize the optimization problems we solved for all the scenarios (different driver 
identity and camera position) using our model. We used different choices of weights to find the optimize 
model under different conditions and priorities of our three main criterions (F1-score, power consumption 
and latency). The following tables summarize different types of optimization problems that we solved for 
the various scenarios (different driver identity, day period and camera position) using our model. We used 
two choices of weights. The first one emphasis the quality of the model over considerations of latency 
and energy consumption. These settings should be considered when more frequent frame rate 
environment is in use since high latency is balanced by the high frequent sampling.      

The other choice of weights allocates an equal attention to all goals and achieved that by setting the 
weight of each goal to 0.33. These settings should be considered when low frequent frame rate 
environment is in use, to prevent long waiting for the system feedback. 

 
Table 13: Optimization results - Male-Dash Scenario 

 

 

 

 

 
Table 14: Optimization results - Male-Mirror Scenario 

 

 

 

 

 
Table 15: Optimization results - Female-Dash Scenario 

 

 

 

 

 

 
30 https://www.ibm.com/analytics/cplex-optimizer 

Frame Processing Rate Weights Bounds Best Model 
Rate=2 (0.9, 0.05, 0.05) (0, 10, 40) Model 16 
Rate=2 (0.33, 0.33, 0.33) (0, 10, 40) Model 16 
Rate=10 (0.9, 0.05, 0.05) (0, 10, 40) Model 4 
Rate=10 (0.33, 0.33, 0.33) (0, 10, 40) Model 16 

Frame Processing Rate Weights Bounds Best Model 
Rate=2 (0.9, 0.05, 0.05) (0, 10, 40) Model Dark0.4 
Rate=2 (0.33, 0.33, 0.33) (0, 10, 40) Model 16 
Rate=10 (0.9, 0.05, 0.05) (0, 10, 40) Model Dark0.3 
Rate=10 (0.33, 0.33, 0.33) (0, 10, 40) Model 16 

Frame Processing Rate Weights Bounds Best Model 
Rate=2 (0.9, 0.05, 0.05) (0, 10, 40) Model 16 
Rate=2 (0.33, 0.33, 0.33) (0, 10, 40) Model 16 
Rate=10 (0.9, 0.05, 0.05) (0, 10, 40) Model 4 
Rate=10 (0.33, 0.33, 0.33) (0, 10, 40) Model 16 
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Table 16: Optimization results - Female-Mirror Scenario 
 

 

 

 

 
Table 17: Optimization results - Night-time Scenario 

 
Frame Processing Rate Weights Bounds Best Model 
Rate=2 (0.9, 0.05, 0.05) (0, 10, 40) Model 16 
Rate=2 (0.33, 0.33, 0.33) (0, 10, 40) Model 16 

 

According to the results presented above the best model/kernel for most scenarios is Model16, however 
model re-design required in a case of high accuracy requirements in some scenarios. Alternative models 
are: 

• Model 4 in daytime dash scenarios when processing rate is low (Rate=10) 
• Model Dark0.4 in daytime mirror scenario with fast processing rate (Rate=2) 
• Model Dark0.3 in daytime mirror scenario with slow processing rate (Rate=10) 

The optimal model for all case does not depends on gender of the driver (male/female). 

Frame Processing Rate Weights Bounds Best Model 
Rate=2 (0.9, 0.05, 0.05) (0, 10, 40) Model Dark0.4 
Rate=2 (0.33, 0.33, 0.33) (0, 10, 40) Model 16 
Rate=10 (0.9, 0.05, 0.05) (0, 10, 40) Model Dark0.3 
Rate=10 (0.33, 0.33, 0.33) (0, 10, 40) Model 16 
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4 Conclusions  

In this document we presented CPSoSaware AI framework and model-based design and re-design 
methodology. In the context of AI framework, we performed multimodal odometer fusion evaluation 
studies that based on realizes sensor cooperation approach that is important for improving two major 
tasks of autonomous driving: vehicle odometry or SLAM and scene analysis and understanding. The sensor 
cooperation indeed necessary in order to maximize overall performance of the vehicle.  Furthermore, a 
vertical fusion strategy has been developed for each one of the associated tasks, which integrates in a 
combined estimation framework the data from “selfish nodes”, i.e., outputs of individual sensors, and 
provides more accurate pose information as well as object detection. This methodology evaluated on the 
simulated scenarios provided by CARLA-ROS framework and the evaluation results shows it importance 
in the context for the autonomous driving use-case. Moreover, the approach of “early” fusion of selfish 
sensor agents extended by a vertical AI mechanism based on a novel semantic data integration. In this 
case the analysis outputs, which are not the raw sensor measurements as previously, are fed to an 
ontology-based semantic Knowledge Graph (which defines the set of incentives) through the flexible 
semantic data integration framework of CASPAR.  This vertical AI mechanism validated both in automotive 
and manufacturing use-cases.  

CPSoSaware model-based design and re-design methodology based on HW-SW partitioning optimization 
approach that developed in Task 4.1. To enable re-design capabilities model-based optimization approach 
extended by additional simulation and optimization capabilities in order to support multi-objective multi-
scenario optimization, that is crucial for the re-design phase. Developed methodology validated on the 
driver state monitoring application and set of optimal models for different scenarios are provided. The 
results are presents re-design strategy w.r.t different scenarios and different importance of objectives 
(accuracy/latency/power) and provides an incentive for development of CPSoS adaptation strategy that 
will use commissioning/decommissioning mechanism to adopt DSM application to the different 
environmental conditions. 


