

D5.1 GENERATION OF HW/SW RUNNABLE

Authors ISI and UoP partners

Work Package WP5 – CPSoSaware Integration and Cross-layer Optimization supporting design-
operation continuum

 Abstract

This report contains the output of Task 5.1 regarding the generation as well as the
overall process of generation of the CPSoSaware hardware and Software
runnables for the tow main application pillars of the project i.e the AI pillar and
the Security pillar.

Funded by the Horizon 2020 Framework Programme
of the European Union

Ref. Ares(2022)3919612 - 24/05/2022

2

Deliverable Information

Work Package
WP5 – CPSoSaware Integration and Cross-layer Optimization supporting design-
operation continuum

Task T5.1 SW/HW Generation of non-functional property enhancements

Deliverable title Definition and planning of evaluation trials

Dissemination Level Public

Status Final

Version Number 1.0

Due date 30/04/2022

Project Information

Project start and
duration

1.01.2020-31.12.2022

Project Coordinator Industrial Systems Institute, ATHENA Research and Innovation Center

26504, Rio-Patras, Greece

Partners 1. ATHINA-EREVNITIKO KENTRO KAINOTOMIAS STIS TECHNOLOGIES TIS PLIROFORIAS,
TON EPIKOINONION KAI TIS GNOSIS (ISI) - Coordinator

2. FUNDACIO PRIVADA I2CAT, INTERNET I INNOVACIO DIGITAL A CATALUNYA (I2CAT),

3. IBM ISRAEL - SCIENCE AND TECHNOLOGY LTD (IBM ISRAEL

4. ATOS SPAIN SA (ATOS),

5. PANASONIC AUTOMOTIVE SYSTEMS EUROPE GMBH (PASEU)

6. EIGHT BELLS LTD (8BELLS)

7. UNIVERSITA DELLA SVIZZERA ITALIANA (USI),

8. TAMPEREEN KORKEAKOULUSAATIO SR (TAU)

9. UNIVERSITY OF PELOPONNESE (UoP)

10. CATALINK LIMITED (CATALINK)

11. ROBOTEC.AI SPOLKA Z OGRANICZONA ODPOWIEDZIALNOSCIA (RTC)

12. CENTRO RICERCHE FIAT SCPA (CRF)

13. PANEPISTIMIO PATRON (UPAT)

Website www.cpsosaware.eu

Control Sheet

http://www.cpsosaware.eu/

3

VERSION DATE SUMMARY OF CHANGES AUTHOR

0.1 12/02/2022 Initial draft ISI

0.2 15/03/2022 UoP input on DSM UoP

0.3 20/03/2022 UoP updated input on DSM UoP

0.4 15/04/2022 ISI input on NTT ISI

0.5 25/04/2022 ISI input on introduction, and conclusions ISI

0.7 28/04/2022 ISI proofreading and updates ISI

0.8 16/05/2022 Deliverable ready for internal review ISI/UoP

0.9 23/05/2022 Internal review has been provided CRF/IBM

1.0 24/05/2022 Final version of the deliverable ready ISI

 NAME

Prepared by ISI

Reviewed by CRF, IBM

Authorised by ISI

DATE RECIPIENT

20/05/2022 Project Consortium

30/05/2022 European Commission

4

Table of contents

1. Executive Summary .. 6
2. Introduction ... 7
3. HLS workflow using Xilinx Vitis Toolset .. 8

3.1. Generic Vitis HLS workflow .. 8
3.2. Workflow followed in the development of the DSM application implemented in FPGA 9

4. HW Runnables .. 11
4.1. FPGA HW runnables for the DSM application ... 11
4.1.1. Description .. 11
4.1.2. Employed HLS pragmas ... 13
4.1.2.1. Local data processing .. 13
4.1.2.2. Pipeline and Loop Unrolling... 14
4.1.2.3. Kernel argument passing through wider ports .. 14
4.1.3. Demonstration/ Usage example/Validation .. 14
4.1.3.1. HW Kernels developed in the DSM application implemented in FPGA 17
4.1.3.2. Datasets ... 18
4.1.3.3. ERT models developed .. 20
4.1.3.4. Accuracy of the models ... 21
4.1.3.5. Speed, power consumption and resources of the models tested in Vitis-ZCU102 22
4.2. Security pillar cryptography runnable ... 25
4.2.1. Description .. 25
4.2.1.1. NTT/INTT basic algorithm .. 26
4.2.2. Deployed HLS pragmas .. 28
4.2.3. Demonstration, usage example and validation ... 34

5. SW Runnables .. 37
5.1. DSM application .. 37
5.1.1. SW Runnables of the DSM application implemented in FPGA .. 37
5.1.2. OpenCL attributes in the DSM application implemented in FPGA 37
5.1.3. SW implementation of the predict_tree() kernels in the DSM application 40
5.2. NTT/INTT application ... 40
5.2.1. SW Runnables of the NTT/INTT application... 40
5.2.2. OpenCL attributes in the NTT/INTT application ... 42
5.2.3. SW implementation of the NTT, INTT .. 49

6. Conclusions .. 49

5

List of figures

Figure 1: The Ubuntu and Vitis+FPGA frameworks developed by UoP. 10
Figure 2: DEST Application for face shape alignment in video frames 11
Figure 3: The operations of the predict() routine that performs the landmark position estimation 12
Figure 4: The same female driver in the YawDD mirror dataset with shortsighted glasses (left) and sunglasses
(right) 19
Figure 5: Various male drivers from the YawDD dash dataset that has been used in our experiments 19
Figure 6: Indicative frames from the 7 videos used initially to experiment with nighttime driver drowsiness
detection 20
Figure 7: Estimation of the single frame processing latency (predict()-single) using appropriate messages
printed in the application software level. 25
Figure 8: NTT Multiplication performance and result estimations 35
Figure 9: NTT Multiplication performance and result estimations 36
Figure 10: NTT computations without initial bit reversal 41

List of tables
Table 1: ERT parameters customized for the DSM application 17
Table 2: ERT models used, based on different ERT parameters 21
Table 3: Top-3 models with the highest accuracy in yawning measurement. 21
Table 4: ERT parameter dependence of the developed hardware kernels 22
Table 5: FPGA resources needed by the HW kernels of the models referenced in Table 3 22
Table 6: Dynamic power consumption of the HW kernels of the models referenced in Table 3. 23
Table 7: Static power consumption of the HW kernels of the models referenced in Table 3 24
Table 8: Total power dissipation of the PL part 24
Table 9: Total power dissipation of the PL part 24
Table 10. Initial Version HLS Pragmas 30
Table 11. Results and comparison for n=256, 23-bit Montgomery Modulo Reduction 32
Table 12. Optimized Memory-Access HLS Pragmas 32
Table 13. Results and comparison between Algorithm 4 and Algorithm 4* 33
Table 14. NTT multiplication Results 37
Table 15: The steps describing how a hardware kernel is loaded in the FPGA using Xilinx XRT. 37
Table 16: Steps describing how an OpenCL kernel is loaded. 42

6

1. Executive Summary

In this deliverable we provide the necessary details on several of the runnable that have been developed
in the CPSoSaware project. The deliverable is a continuation of the activities of WP2, WP3 and WP4 on
how to create solutions that exploit hardware – software codesign as well as making use of possible
hardware reconfiguration. The deliverable includes a report of the main findings for the hardware and
software runnable as well as the relevant code (found as in git repositories that are provided within the
report text).

The report is split into two parts. The first part discusses the necessary hardware runnables that are
designed in WP2, WP3 and WP4 and are mainly focused on the AI pillar of the CPSoSaware project as well
as the security pillar of the project (since these are the main application pillars of CPSoSaware). More
specifically, we focus our analysis on how to create a series of hardware runnables for driver state
monitoring (DSM) when the driver is drowsy aiming to provide very fast and very efficient detection that
can trigger a system’s response. Apart from that based on the profiling activities and hardware – software
partitioning approaches performed in WP4 and T4.1, we also report in D5.1 hardware runnables for the
most computationally intensive arithmetic operation in quantum safe cryptography schemes (that
constitute the focal point of cryptographic engineering research in the recent years) which is the Number
Theoretic Transform (NTT). All the hardware runnable solutions use HLS tools (specifically the Xilinx HLS
framework) to generate the hardware IP cores. The hardware runnable section includes a description of
the functionality and key features of each runnable, the HLS pragmas that were used and reports the
findings/results when the hardware runnable is deployed in a real system (typically some Xilinx MPSoC
FPGA device).

The second part of the deliverable report follows a similar approach as the first part but it is focused on
the software deliverables that have been developed in the CPSoSaware project. Similarly to the first part
of the Deliverable, we focus on the AI pillar and the security pillar of the project and more specifically on
the DSM and the NTT runnables as those are implemented purely in software. The second section include
a description of each runnable, the OpenCL code that was developed (if applicable for the runnable) as
well as the main results.

The final section of the deliverable is a conclusion paragraph that summarizes the main findings and the
activities of the T5.1 and the relevant deliverable.

7

2. Introduction

In this Deliverable we focus on the hardware and software runnables that have been developed based on
OpenCL and/or HLS C/C++ code using High level Synthesis tools (for hardware) or OpenCL compilers (for
software). The analysis is focused on some of the components designed and analyzed in the WP2 and
mostly WP3 activities after performing the necessary profiling done in WP4 (in T4.1) to determine what
should be implemented in hardware and what on software. Since the main application pillars of the
CPSoSaware project are the AI pillar and the security pillar, the provided runnable solutions are for those
pillars. The described runnables are indicative of the overall design flow that is been followed in the
project and aim to show how a specific algorithm (and overall design solution) can be realized in actual
hardware and/or software runnables.

We present a Driver State Monitoring solution that uses a camera installed inside a car to monitor the
face of the driver. Each frame of this camera is analyzed and facial landmarks are aligned. The position of
these landmarks and their distance can be used to recognize whether the driver is yawning, or if his eyes
are sleepy. Moreover, the pose of his head can also reveal information about the driver’s drowsiness level.
The 2D facial landmark alignment method used in the algorithm is implemented in C++ with the open
source libraries DLIB and Deformable Shape Tracking (DEST), is used in several applications such as driver
drowsiness detection, recognition of facial expressions, etc. The most challenging of these applications
require fast processing of video frames. Therefore, the alignment of the facial landmarks in a single video
frame has to be performed with the minimum possible latency without precision loss. The fast 2D facial
landmark detection algorithm that has been presented by Kazemi and Sullivan in [1] where an Ensemble
of Regression Trees (ERT) is used to estimate the position of the facial landmarks, has been adopted in the
DSM runnables. The algorithms and the overall experiments on how to correctly design the runnables are
presented in D4.8

For the security pillar, our analysis is focused on the next generation of security/cryptography primitives
that are quantum safe. More specifically, we perform research on how to efficiently implement
cryptography algorithms that will remain secure even when quantum computer-based attacks (like the
Shor’s algorithm attacks) are possible. This constitutes one of the most important recent cryptography
engineering goals in the cryptography research field. Following the profiling activities of T4.1 we identified
as the main bottleneck of most of the Lattice Based Cryptography schemes (that currently dominate the
quantum safe cryptography solutions), the Number Theoretic Transform operation (NTT) taking place
before and after each polynomial vector multiplication taking place during the all the algorithms’
execution flow. Our cryptography scheme of reference has been the Dilithium Digital Signature, but the
technique is generic enough to be applicable to any other algorithm that uses NTT. Our goal in
implemented the relevant NTT hardware and software runnables was to achieve low latency under a fair
tradeoff with utilized resources.

In the following section we describe the HLS process that was used for the implementation of the
hardware runnables (to clarify and detail the design flow that was used) and in the sections after that we
describe how the above two solutions (DSM and NTT) haves been realized as hardware and software
runnables.

8

3. HLS workflow using Xilinx Vitis Toolset

The Xilinx Vitis High Level Synthesis (HLS) tool synthesizes a C or C++ function into Register-
Transfer Level (RTL) code for acceleration in the programmable logic area of a Field Programmable
Gate Array (FPGA) board. Vitis HLS is tightly integrated with the Vitis core development kit and
the application acceleration design flow. Some benefits of using a high-level synthesis (HLS)
design methodology include:

• Developing and validating algorithms at the C-level for the purpose of designing at an
abstract level from the hardware implementation details.
• Using C-simulation to validate the design and iterate more quickly than with traditional RTL
design.
• Controlling the C-synthesis process using optimization pragmas to create high-performance
implementations.
• Creating multiple design solutions from the C source code and pragmas to explore the design
space and find an optimal solution.
• Quickly recompile the C-source to target different platforms and hardware devices.

HLS includes the following stages:

1. Scheduling determines which operations occur during each clock cycle based on:

• When an operation’s dependencies have been satisfied or are available.
• The length of the clock cycle or clock frequency.
• The time it takes for the operation to complete, as defined by the target device.
• The available resource allocation.
• Incorporation of any user-specified optimization directives.

2. Binding assigns hardware resources to implement each scheduled operation, and maps
operators (such as addition, multiplication, and shift) to specific RTL implementations. For
example, a multiplication operation can be implemented in RTL as a combinational or
pipelined multiplier.

3. Control logic extraction creates a finite state machine (FSM) that sequences the operations in
the RTL design according to the defined schedule.

3.1. Generic Vitis HLS workflow
Vitis HLS is project based and can contain multiple variations called solutions to drive synthesis
and simulation. Each solution can target either the Vivado IP flow, or the Vitis Kernel flow. Based

9

on the target flow, each solution will specify different constraints and optimization directives, as
described in Enabling the Vivado IP Flow and Enabling the Vitis Kernel Flow. 1

The following steps are present in a typical design flow which is comprised of synthesis, analysis,
and optimization:

1. Creation of a new Vitis HLS project.
2. Verification of the source code with C simulation.
3. Executing high-level synthesis to generate RTL files.
4. Analyzing the results by examining latency, initiation interval (II), throughput, and

resource utilization.
5. Optimization and repeat from step 2 as needed.
6. Verification of results using C/RTL Co-simulation.

Vitis HLS implements the solution based on the following:

• Target flow
• Default tool configuration
• Design constraints
• Any optimization pragmas or directives.

A developer can use optimization directives to modify and control the implementation of the
internal logic and I/O ports, overriding the default behaviors of the tool.

3.2. Workflow followed in the development of the DSM application
implemented in FPGA

The Driver State Monitoring (DSM) framework implemented by UoP consists of 2 platforms that
are shown in Figure 1. The Deformable Shape Tracking (DEST) applications, particularly the video
tracking, had been initially ported to an Ubuntu platform replacing the slow Eigen library calls
with fast C implementations.

1 Refer to Default Settings of Vivado/Vitis Flows for a clear list of differences between the two flows.

10

Figure 1: The Ubuntu and Vitis+FPGA frameworks developed by UoP.

In the Ubuntu platform, alternative shape alignment algorithms and modifications can be tested.
The output of these algorithms can be directly displayed on screen for easier debugging. The
input in the Ubuntu platform can either be from a camera or from a stored video. The compilation
process is performed with GNU compilers that are compatible with the ones used in the target
platform of the ZCU102 FPGA board.

The ZCU102 FPGA board can be directly used in the environment of the vehicle with its input
being normally a camera pointed at the driver. The results of the frame processing performed by
the DEST video tracking application (DSM) that has been ported to the Vitis+FPGA platform are
used by higher level applications that can generate alarms if driver drowsiness is detected. In this
case no video output is needed. However, for full functionality, debug and comparison reasons,
the DSM application can also read input from a video file stored in the SD card of the FPGA
platform and output video similar to the one produced by the Ubuntu environment which can be
stored in the SD card and viewed offline.

The efficiency of the hardware acceleration techniques has been evaluated using Xilinx
Vitis/Vivado HLS tools. The features that can be estimated include latency, required resources and
power consumption. The facilities offered by the Xilinx XRT are used to dynamically select the
optimal pair of ERT model and HW kernel according to environmental conditions as described in
D3.2 and D5.2. Moreover, XRT offers real time monitoring techniques e.g., about the speed of the
hardware of software functions that were also taken into consideration.

11

4. HW Runnables

4.1. FPGA HW runnables for the DSM application

4.1.1. Description
The algorithm for the DEST application that aligns landmarks in faces detected in the frames of a
video or camera stream we used is depicted in Figure 2. In the original application, the operations
in the green boxes did not exist. Frames from the video stream are retrieved and if face landmark
alignment is needed in the specific frame, face detection takes place using the OpenCV library.

The coordinates of the face bounding box returned by OpenCV are used in the next step that
performs landmark alignment using the predict() function2. The Similarity Transform (ST) process
has to be applied on the detected face bounding box to adapt its coordinates to the ones used by
the mean shape stored in the trained model. This model consists of a number of regression trees
in each cascade stage, and the tree node values are available from the training.

Figure 2: DEST Application for face shape alignment in video frames

2 The predict() function is implemented in the DEST library and performs landmark position estimation.

12

The most computational intensive operation that is the predict() function as seen in Figure 3. The
top level Tracker::predict() accepts as input the image frame and the position of the bounding box
of the face that has been recognized and returns the estimated face landmark positions. A loop
in this function executes the cascade stages. Within each cascade stage, the Regressor::predict()
is called. The Regressor::predict() accepts as input the image pixel matrix Img, the face bounding
box coordinates and the current shape estimation. In the Regressor::predict() function the pixel
intensities of a sparse image representation are read and the Tree::predict() is called for all the
stored binary regressor trees. In each tree node that is visited, the intensities of a pair of pixels
indexed in the trained model are compared. The right or left direction of the binary tree is
followed depending on whether the intensity difference is larger than a threshold that is also
stored in the trained model.

Figure 3: The operations of the predict() routine that performs the landmark position estimation

In our implementation, the functionality of all the three nested predict() routines shown in Figure
3, was initially included in flat Kernel_predict() routine that has been developed in ANSI C, in order
to be portable to hardware. All the numerous parameters of the trained model that were
accessed in the original DEST implementation from predict() routines, are now loaded during
initialization into contiguous buffers from the new predict_prepare() routine, seen in the
corresponding green box in Figure 2.

The initial implementation in hardware of the complete functionality of the predict_kernel()
routine resulted in a kernel that required 16 large buffers to be passed as arguments and
transferred from the main DRAM memory. Complicated operations that were consuming a large

13

number of resources were only executed once for each predict_kernel() call. Inside these
operations there were no iterations and other operations appropriate for parallelization that
would benefit from hardware implementation.

For this reason, a profiling was performed in the internal operations of the kernel_predict()
routine. It was found that 85% of the latency of this routine was spent in the iterations of the
Regressor:predict() and Tree::predict() routines. Therefore, it was decided to implement the
iteration that visits the binary regression trees and the nested one that visits the levels of these
trees in hardware as a single hardware kernel named predict_trees(). For more details, the reader
is referred to the Deliverable D4.8 where more details can be found.

4.1.2. Employed HLS pragmas
Several profiling methods supported in the Xilinx Vitis environment have been used to assess the
acceleration techniques that have been applied in the predict_trees() kernel. Three levels of
profiling were employed:

• Min/max latency estimation in the Vitis/Vivado High Level Synthesis (HLS) tool,

• XRT profiling on the target ZCU102 board

• Profiling performed within the application code by printing the time intervals measured
to complete a predict_kernel and a predict_trees routine. The predict_kernel latency
corresponds to a single frame processing and the one of the predict_trees is the latency
of a hardware kernel execution.

The following acceleration techniques were tested:

4.1.2.1. Local data processing
Accessing local BRAM is much faster than accessing the RAM that is common to the PS and PL of
the FPGA. Copying the data needed by the PL from RAM to BRAM is a very efficient acceleration
technique. However, this technique can be employed in applications where the size of the data
used by the hardware kernel is small and the data are reused multiple times. In this way, the initial
data copy does not take much time and then all the accesses are performed extremely fast.

In our DSM application the model is too large (approximately 50Mbytes) to fit in the local BRAM.
The size of the data needed in each cascade stage is also too large to fit in the local BRAM. Even
if the model data fitted in local BRAM it would be needed to repeatedly swap between the data
of each cascade stage. The overhead required for this continuous data swapping would exceed
the expected gain from the higher speed data processing.

Another problem with the use of this technique in the DSM application is that only log2(number
of tree nodes) of the data stored in the pretrained model are used within the kernel but the values
that are going to be used are not known before the kernel execution. This is due to the fact that

14

the parameters stored in the model concern all the nodes of the regression trees, but only the
values of the nodes that are visited are used in the calculations performed within the kernel and
these nodes are only 5 as the tree is traversed from the root to the leaf in a binary tree of 32
nodes. For these reasons, this acceleration method was not applicable.

4.1.2.2. Pipeline and Loop Unrolling
Loop unrolling was applied to the loops of the Regressor::predict and Tree::predict routines of
Figure 3. The system was forced to use pipeline wherever applicable. The loop in the
Regressor::predict routine traverses the trees of the current cascade stage and the loop in the
Tree::predict traverses the nodes in each tree from the root to the leaf. After the loop in the
Tree::predict routine ends, a second loop updates the correction factors.

Unrolling can be performed by several factors leading to implementations of different speed and
resource requirements. The factors that maximized the speed with respect to the resource
limitations of the specific FPGA of the ZCU102 target board lead to an overall predict_kernel
latency of 36ms, i.e., a speed improvement by approximately 15%.

4.1.2.3. Kernel argument passing through wider ports
As already described, transferring large parts of the data model to local BRAM was not feasible.
Although only about 15% of the parameters stored in the data models are used in the operations
of the hardware kernel, if these values are transferred through wide ports a significant
acceleration can be achieved. The model parameters are passed as arguments to the hardware
kernel. The initial hardware implementation of the predict_kernel() routine, required 18 large
buffers to be passed as arguments. In the implementation of the predict_tree() routine as
hardware kernel the number of buffers that have to be passed as arguments was reduced to 5
but still it is not possible to store their values in local BRAM. However, transferring in BRAM only
the data needed by the loop in the Tree::predict() routine, using a wide port (of 1024 bits) is
feasible. This technique in conjunction with pipeline and loop unrolling allowed a further
reduction of the predict_tree() kernel latency to 33ms (using the default ERT model).

By modifying the default ERT model parameters such as the cascade stages, number of trees per
cascade stage, regression tree sized, or the number of reference pixels in the sparse image
representation used, the resulting hardware kernels may have different resource requirements
and different speeds. Using comparable ERT model parameters both in the software and the
hardware implementations an acceleration in the order of 22% was achieved.

4.1.3. Demonstration/ Usage example/Validation
The full code of the predict_tree() HW kernel is the following:

#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <ap_int.h>
#include "common_decl_fl.h"

15

//// THE FOLLOWING DEFINITIONS ARE REQUIRED FOR ARGUMENT PASSING THROUGH WIDE PORTS
//// KR_INTENSITIES ////
#define NUM_OF_VALUES 600
#define WIDTH_PER_VALUE 32
#define DATA_PER_PKT 30
#define DATAWIDTH 960
#define NUM_OF_PKT (NUM_OF_VALUES/DATA_PER_PKT)
typedef ap_int<DATAWIDTH> u_intensities_t;

//// KR_SPLIT1/2 ////
#define SPLIT_NUM_OF_VALUES 16000
#define SPLIT_WIDTH_PER_VALUE 16
#define SPLIT_DATA_PER_PKT 64
#define SPLIT_DATAWIDTH 1024
#define SPLIT_NUM_OF_PKT (SPLIT_NUM_OF_VALUES/SPLIT_DATA_PER_PKT)
typedef ap_int<SPLIT_DATAWIDTH> u_split_t;

//// KR_NODE_THRES ////
#define THRES_NUM_OF_VALUES 16000
#define THRES_WIDTH_PER_VALUE 32
#define THRES_DATA_PER_PKT 32
#define THRES_DATAWIDTH 1024
#define THRES_NUM_OF_PKT (THRES_NUM_OF_VALUES/THRES_DATA_PER_PKT)
typedef ap_int<THRES_DATAWIDTH> u_thres_t;

#define learningRates 0.15

extern "C" {

 void predict_trees(
 float* kr_sr_tg,
 int kr_tg_len,
 int* kr_casc,
 u_split_t* kr_split1,
 u_split_t* kr_split2,
 u_intensities_t* kr_intensities,
 u_thres_t* kr_node_thres,
 float* kr_node_mean)
 //float* kr_learningRates)
 {
 #pragma HLS INTERFACE m_axi latency=1 depth=39168 bundle=gmem_node_mean
port=kr_node_mean
 #pragma HLS INTERFACE m_axi latency=1 depth=136 bundle=gmem_sr_tg port=kr_sr_tg
 #pragma HLS INTERFACE m_axi latency=1 depth=16000 bundle=gmem_split1
port=kr_split1
 #pragma HLS INTERFACE m_axi latency=1 depth=16000 bundle=gmem_split2
port=kr_split2
 #pragma HLS INTERFACE m_axi latency=1 depth=1 bundle=gmem_casc
port=kr_casc
 #pragma HLS INTERFACE s_axilite bundle=control port=kr_node_mean
 #pragma HLS INTERFACE s_axilite bundle=control port=kr_node_thres
 #pragma HLS INTERFACE s_axilite bundle=control port=kr_sr_tg
 #pragma HLS INTERFACE s_axilite bundle=control port=kr_split1
 #pragma HLS INTERFACE s_axilite bundle=control port=kr_split2
 #pragma HLS INTERFACE s_axilite bundle=control port=kr_intensities
 #pragma HLS INTERFACE s_axilite bundle=control port=kr_kr_tg_len
 #pragma HLS INTERFACE s_axilite bundle=control port=kr_casc

 int indx, k;
 int numCasc = kr_casc[0];

 int split_index=numCasc*SPLIT_NUM_OF_PKT;
 int thres_index=numCasc*THRES_NUM_OF_PKT;

 // PREPARATION OF BRAM BUFFERS TO STORE PARAMETERS TRANSFERRED THROUGH WIDE PORTS
 float kr_intensities_bram[NUM_OF_VALUES];
 #pragma HLS array_partition variable=kr_intensities_bram complete dim=0
 #pragma HLS resource variable=kr_intensities_bram core=RAM_2P_LUTRAM

16

 // USE OF WIDE PORT WITH LOOP UNROLLING/PIPELINE
 loop_kr_intensities_pkt:for(int i=0; i<NUM_OF_PKT; i++)
 {
 #pragma HLS loop_tripcount min=20 max=20
 #pragma HLS pipeline II=1
 loop_data_per_pkt:for(int k=0; k<DATA_PER_PKT; k++)
 {
 kr_intensities_bram[i*(NUM_OF_PKT)+k] = kr_intensities-
>range((k+1)*WIDTH_PER_VALUE-1, k*WIDTH_PER_VALUE);
 }
 }

// PREPARATION OF BRAM BUFFERS TO STORE PARAMETERS TRANSFERRED THROUGH WIDE PORTS
 int kr_split1_bram[SPLIT_NUM_OF_VALUES];
 #pragma HLS array_partition variable=kr_split1_bram complete dim=0
 #pragma HLS resource variable=kr_split1_bram core=RAM_2P_LUTRAM

 int kr_split2_bram[SPLIT_NUM_OF_VALUES];
 #pragma HLS array_partition variable=kr_split2_bram complete dim=0
 #pragma HLS resource variable=kr_split2_bram core=RAM_2P_LUTRAM

// USE OF WIDE PORT WITH LOOP UNROLLING/PIPELINE
 loop_kr_split_pkt:for(int i=0; i<SPLIT_NUM_OF_PKT; i++)
 {
 #pragma HLS loop_tripcount min=250 max=250
 #pragma HLS pipeline II=1

 loop_split_data_per_pkt:for(int k=0; k<SPLIT_DATA_PER_PKT; k++)
 {
 kr_split1_bram[i*(SPLIT_NUM_OF_PKT)+k] =
(&kr_split1[split_index])->range((k+1)*SPLIT_WIDTH_PER_VALUE-1, k*SPLIT_WIDTH_PER_VALUE);
 kr_split2_bram[i*(SPLIT_NUM_OF_PKT)+k] =
(&kr_split2[split_index])->range((k+1)*SPLIT_WIDTH_PER_VALUE-1, k*SPLIT_WIDTH_PER_VALUE);
 }
 split_index++;
 }

// PREPARATION OF BRAM BUFFERS TO STORE PARAMETERS TRANSFERRED THROUGH WIDE PORTS
 float kr_thres_bram[THRES_NUM_OF_VALUES];
 #pragma HLS array_partition variable=kr_thres_bram complete dim=0
 #pragma HLS resource variable=kr_thres_bram core=RAM_2P_LUTRAM

// USE OF WIDE PORT WITH LOOP UNROLLING/PIPELINE
 loop_kr_node_thres_pkt:for(int i=0; i<THRES_NUM_OF_PKT; i++)
 {
 #pragma HLS loop_tripcount min=500 max=500
 #pragma HLS pipeline II=1

 loop_thres_data_per_pkt:for(int k=0; k<THRES_DATA_PER_PKT; k++)
 {
 kr_thres_bram[i*(THRES_NUM_OF_PKT)+k] =
(&kr_node_thres[thres_index])->range((k+1)*THRES_WIDTH_PER_VALUE-1, k*THRES_WIDTH_PER_VALUE);
 }
 thres_index++;
 }

 loop_num_trees: for(int j = 0; j < kr_tg_len; ++j)
 {
 // LOOP UNROLLING
 #pragma HLS loop_tripcount max=500 min=500
 #pragma HLS unroll factor=4

 int maxTests = 4;
 int n = 0;

17

 num_trees_section:{
 loop_max_tests: for (k = 0; k < maxTests; ++k)
 {
 // LOOP UNROLLING
 #pragma HLS latency max=2 min=2
 #pragma HLS loop_tripcount max=4 min=4
 #pragma HLS unroll factor=4

 indx = numCasc*500*maxN+j*maxN+n;

 if (kr_split1[indx]<0)
 {
 break; // premature leaf
 }
 bool left = kr_intensities_bram[kr_split1_bram[indx]]-
kr_intensities_bram[kr_split2_bram[indx]]> kr_thres_bram[indx];
 n = left ? 2 * n + 1 : 2 * n + 2;
 }
 indx = numCasc*500*maxN+j*maxN+n;
 loop_num_LM: for (k=0;k<2*LM;k++)
 {
 // LOOP UNROLLING AND PIPELINE
 //#pragma HLS latency max=2 min=2
 #pragma HLS loop_tripcount min=136 max=136
 #pragma HLS UNROLL factor=8
 #pragma HLS pipeline II=1
 kr_sr_tg[k] += kr_node_mean[indx*(2*LM)+k] *
learningRates;
 }
 }
 }
 }
}

The full source code of the Xilinx Vitis project that implements both the HW kernels and the SW
application can be downloaded from the following link: https://git.esda-
lab.gr/npetrellis/cpsosawaredsm-vitis

4.1.3.1. HW Kernels developed in the DSM application implemented in
FPGA

The parameters of the ERT face alignment model are described in D4.8 in detail. The ones that
affect the implementation of the HW kernels are listed in Table 1. From the description of the ERT
parameters in this table it is clear that a trade-off has to be made between accuracy and speed.
However, the convergence to a higher accuracy is much slower after these parameters reach a
certain limit and in this case, it is not worth extending excessively the latency without a useful
result.

Table 1: ERT parameters customized for the DSM application

Parameter
Name

Default
value

Experimentation in
the range

Description

Cascade stages
(Tcs)

10 9-12 Fewer cascade stages result in faster shape estimation
but with lower accuracy. However error floor prevents
accuracy improvement if excessive cascade stages are
added

https://git.esda-lab.gr/npetrellis/cpsosawaredsm-vitis
https://git.esda-lab.gr/npetrellis/cpsosawaredsm-vitis

18

Trees (Ntr) 500 400-600 Fewer trees increase speed but reduce accuracy
Tree depth (Td) 5 4-6 Number of tree nodes is 2Td-1. Shorter tree depth (and

consequently tree nodes) results in faster operation but
with lower accuracy

Reference pixels
(Nc)

600 400-800 This is the number of pixels that the sparse image
consists of. Fewer reference pixels are expected to
increase speed with accuracy penalty

4.1.3.2. Datasets

The effect of the parameter values in Table 1 also depend on the image dataset used. The iBug or
Helen dataset that were used to train the models shipped with the DEST package contain general
face images. However, training the model with these images was not optimal for driver face
alignment since people displayed in the iBug and Helen datasets are not in the driver’s seat
position. Moreover, the lighting exposure of these photographs do not resemble with driving in
nighttime conditions.

The developed DSM module has been tested initially with videos that did not display a driver.
These videos were simple ones captured by the office web camera either in daytime or nighttime
with good light exposure. However, the conditions in these videos did not resemble the driving
environment in a real vehicle especially during nighttime.

There aren’t many public datasets for driver drowsiness detection. A rich dataset with drivers
yawning can be found in the YAWDD dataset (https://ieee-dataport.org/open-access/yawdd-
yawning-detection-dataset). The video specs in this dataset are the following: video 640x480 24-
bit true color (RGB) 30 fps AVI without audio. This dataset consists of several photographs and
videos. The videos are split in two main categories:

1. Videos captured from camera placed on the dash of the car
2. Videos captured from a camera mounted on the internal mirror.

In the first group the camera points directly to the face of the driver while in the second group
the camera points the face of the driver from an angle. Taking into consideration that the shape
alignment followed is a 2D approach it is expected that videos taken from the dash of the car will
achieve a higher accuracy.

The dash dataset consists of 16 videos with male drivers and 13 with female drivers. The mirror
dataset consists of 47 male drivers and 43 female drivers3. Most of the videos last between 60
and 90 seconds. For each driver in the mirror dataset, 3-4 video types are available:

1. wearing or not wearing glasses
2. yawning

3 Age, race and ethnicity of the drivers are not considered

19

3. talking.

The driver had three yawnings in the corresponding videos.

Figure 4: The same female driver in the YawDD mirror dataset with shortsighted glasses (left) and sunglasses (right)

Figure 5: Various male drivers from the YawDD dash dataset that has been used in our experiments

Although the YawDD dataset is quite extensive it has the following drawbacks:

• All the videos are captured in daytime, thus the darker environmental conditions needed
to test a DSM module in nighttime drive cannot be tested

• The cars are stationary and the drivers pretend to drive so the conditions are not fully
realistic

• Only yawning can be tested, the drivers do not close their eyes in a sleepy way, nor do
they pretend to get a microsleep (a sleep for a few seconds) and the distraction can be
partially tested (e.g., from the videos where the drivers talk).

For these reasons, although the YawDD dash videos have been used in our tests, UoP also
developed its own dataset that is appropriate for testing DSM modules in nighttime conditions.
Initially, UoP used 7 videos of 20-30 seconds duration with the same driver but in nighttime and

20

real drive in a highway as seen in Figure 6. The driver is yawning, periodically closes his eyes in a
sleepy way and pretends to get a few microsleeps.

Figure 6: Indicative frames from the 7 videos used initially to experiment with nighttime driver drowsiness detection

A more ambitious dataset (NYSEM-Nighttime, Yawning, SleepyEye, Microsleep) for testing DSM
modules in the nighttime with real driving conditions is also under development by UoP. It will
consist of videos with more than 20 male and female drivers. For each driver 6 videos lasting 20-
30 second will be available and in each video the driver will yawn 3 times. Moreover, for each
driver 6 videos will also be made with the driver pretending to have microsleeps (this is a feature
that cannot be found in any public dataset already available). For safety reasons these 6 videos
have been captured stationary with the driver pretending to drive as is the case with YawDD
videos. All of these videos are captured in the nighttime.

By the end of the project NYSEM dataset will be used in a complementary way with YawDD to
test the DSM developed by UoP as well as other DSM modules developed as smartphone apps or
with GPUs from Catalink and ISI as will be described in detail in WP6. Moreover, NYSEM will also
be used in the future to extract frames that will be used to train new ERT face alignment models
specialized for nighttime drowsiness detection.

4.1.3.3. ERT models developed

Various models have been trained with the same Helen general purpose dataset. Table 2 shows
the combinations tested and the training error exposed by the DEST training application that has
also been ported to Ubuntu. A different application is used to evaluate a model using a test set
of 300 photos, different from the Helen dataset. The details of these models are discussed in D4.8.

Models M15 and M16 have been defined as combinations of various parameter values for the
best accuracy and the highest speed, respectively. Since we did not have a dataset available with
driver images and especially in nighttime lighting conditions, we defined three models called
Dark0.3, Dark0.4 and Dark0.5 that have been trained from the Helen images again but after
artificially darkening them during the training process.

The ERT parameters with the default values were used but a dynamic range adaptation has been
applied in grayscale to compress the pixel values to the 30%, 40% or 50% of their original range
in the models Dark0.3, Dark0.4 and Dark0.5, respectively. For example, if the pixel intensity is
initially between 0 and 100, this intensity is linearly adapted to shorten the range between 0 and
30 in the Dark0.3 model. It is obvious that Dark0.3 has been trained with darker images while

21

Dark0.5 is closer to the M0 model. The test error is worse than the other models. However, in a
real car environment and nighttime drive it is expected that the behavior of the Dark0.* models
may be better than several other models listed in Table 2.

Table 2: ERT models used, based on different ERT parameters

4.1.3.4. Accuracy of the models

Exhaustive experiments are described in D4.8 concerning the accuracy of the models listed in
Table 3 under different environmental conditions. Table 3 lists the conclusions about which
models are more appropriate for certain combinations of driver gender/lighting
conditions/mount position of the camera. The F1-score has been used to sort the model accuracy
since this metric is a combination of precision and sensitivity. The male and female drivers in
daytime conditions have been evaluated with the YawDD dataset (camera mounted on the mirror
or the dash). The nighttime is evaluated for the present, only with the 7 videos that we have
developed in UoP. More exhaustive tests will be performed when the NYSEM dataset will be
available.

Table 3: Top-3 models with the highest accuracy in yawning measurement.

Condition Model
Male-Daytime-Dash M16, M8, M15

Male-Daytime-Mirror Dark0.3, M8, Dark0.5
Female-Daytime-Dash M12, M15, M16

Female-Daytime-Mirror Dark0.3, M8, Dark0.5
Male-Nighttime (from Table 5) M8, M16, M15

22

4.1.3.5. Speed, power consumption and resources of the models tested in
Vitis-ZCU102

Among the various models that have been trained in the Ubuntu environment and were listed in
Table 1, we focused on the models listed in Table 3 since they achieved the highest accuracy.

Table 4: ERT parameter dependence of the developed hardware kernels

ERT Parameter Affects Old
predict_kernel()
implementation

Affects New
predict_tree()

implementation

Notes

Cascade stages
(Tcs)

Yes No In the predict_kernel() implementation the cascade
loop was implemented inside the HW kernel. In the
new predict_tree(), it is implemented in the SW
level outside the hardware kernel.

Trees (Ntr) Yes Yes The HW kernel latency is proportional to the
number of trees examined in each cascade stage

Tree depth (Td) Yes Yes The regressor tree nodes is 2Td but only Td nodes
are visited. The HW kernel latency is proportional to
Td

Reference pixels
(Nc)

Yes Yes The larger the number of reference pixels, the
longer time is needed to transfer their intensities to
the kernel. However, the number of reference pixels
examined depends on the regressor trees and their
depth instead of the Nc. This is due to the fact that
the pair of reference pixel intensities is determined
in each regressor tree node that is visited.

Splits No No
λ No No
lf No No

Shapes No No

The variations in the ERT parameter values between the models listed in Table 1 affect the
implementations of the old hardware kernels predict_kernel() and the new one: predict_tree().
Table 4 shows the dependencies between these kernels and the ERT parameters. Based on these
tables it can be deducted that the models M0, M2-M5, M7, Dark0.3, Dark0.4, Dark0.5 may all use
the same HW kernel with 10 cascade stages, 500 regressor trees / cascade stage, tree depth equal
to 5 and 600 reference pixels. The HW kernels that support the rest of the models can be
customized and require different resources and power, while the show different latency. The
resources required by the models that achieved the highest accuracy in Table 3 are shown in Table
5. As expected, the lower resources are required by the hardware kernel for M16 and the higher
resource are required by M15.

Table 5: FPGA resources needed by the HW kernels of the models referenced in Table 3

23

Model/
Resources

M0, M4,
Dark0.3,
Dark0.4,
Dark0.5

M8 M12 M15 M16

LUT 90371 (33%) 90631 (33%) 86639 (32%) 94241 (34%) 69976 (26%)

LUTRAM 21860 (15%) 22020 (15%) 19040 (13%) 25212 (18%) 7802 (5%)

FF 123228 (22%) 123268 (22%) 119299 (22%) 125173 (23%) 111104 (20%)

BRAM 284 (31%) 284 (31%) 284 (31%) 284 (31%) 275 (30%)

DSP 88 (3%) 88 (3%) 90 (4%) 90 (4%) 91 (4%)

BUFG 15 (4%) 15 (4%) 11 (3%) 15 (4%) 7 (2%)

MMCM 1 (25%) 1 (25%) 1 (25%) 1 (25%) 1 (25%)

The estimated power consumption of the models referenced in Table 3 is analyzed in Table 6
which shows the dynamic power consumption and in Table 7. Since we are interested in the
power consumption of the kernels that are implemented in the PL system we get the total power
dissipation, static and dynamic, by adding all the power estimations for the PL part and the results
are listed in Table 8. As we can see the power consumption ranges between 2.665W (M16) and
2.905W (M15).

Regarding the latency of each HW kernel implementation and its effect on the overall processing
time needed by a single frame, the results are listed in Table 9. In the first row of Table 9 the
latency of a single frame is shown, as it is measured from the software side with appropriate print
messages, as seen in Figure 7. In the second row the HW kernel latency is listed as it is profiled
using the XRT real time monitoring facilities that generate a runtime csv file
(profile_summary.csv). Since it was not possible to migrate data pixel intensities using wide port
and local BRAM in the same way we implemented migrate of the other HW kernel arguments, its
latency was measured separately as shown in the last row of Table 9.

Table 6: Dynamic power consumption of the HW kernels of the models referenced in Table 3.

Model/ Power M0, M4, Dark0.3,
Dark0.4, Dark0.5

M8 M12 M15 M16

Clocks 0.496W (10%) 0.498W (10%) 0.515W (11%) 0.515W (10%) 0.461W (10%)

Signals 0.488W (10%) 0.510W (11%) 0.540W (11%) 0.561W (11%) 0.454W (10%)

Logic
0.369W (8%) 0.374W (8%) 0.399W (8%) 0.401W (8%) 0.350W (7%)

BRAM 0.585W (12%) 0.584W (12%) 0.586W (12%) 0.604W (12%) 0.576W (12%)

DSP 0.088W (2%) 0.089W (2%) 0.092W (2%) 0.088W (2%) 0.089W (2%)

24

MMCM 0.097W (2%) 0.097W (2%) 0.097W (2%) 0.097W (2%) 0.097W (2%)

PS 2.659W (56%) 2.659W (55%) 2.659W (54%) 2.659W (55%) 2.659W (57%)

Table 7: Static power consumption of the HW kernels of the models referenced in Table 3

Model/ Power M0, M4, Dark0.3,
Dark0.4, Dark0.5

M8 M12 M15 M16

PL 0.638W (86%) 0.638W (86%) 0.639W (86%) 0.639W (86%) 0.638W (86%)

PS 0.100W (14%) 0.100W (14%) 0.100W (14%) 0.100W (14%) 0.100W (14%)

Table 8: Total power dissipation of the PL part

Model/ Power M0, M4, Dark0.3,
Dark0.4, Dark0.5

M8 M12 M15 M16

PL 2.761W 2.79W 2.868W 2.905W 2.665W

Table 9: Total power dissipation of the PL part

Model/Latencies M0
model

M4
Model

M8
Model

M12
Model

M15
Model

M16
Model

Dark0.3
Model

Dark0.4
Model

Dark0.5
Model

Notes

Frame processing
time

33.166
ms

34.301
ms

34.658
ms

38.629
ms

47.756
ms

29.314
ms

33.816
ms

37.717
ms

33.371
ms

1st
Frame

HW kernel
Predict_Trees (XRT

profile_summary.csv)

2.33
ms

2.42
ms

2.37
ms

2.86
ms

2.90
ms

2.09
ms

2.26
ms

2.26
ms

2.40
ms

Worst
Case
(1st

frame)

Migrate pixel
intensities (XRT

profile_summary.csv)

0.076
ms

0.149
ms

0.160
ms

0.151
ms

0.153
ms

0.145
ms

0.149
ms

0.149
ms

0.114
ms

Worst
Case
(1st

Frame)

Maximum supported
frame rate

30 fps 29 fps 28 fps 25 fps 20 fps 34 fps 29 fps 26 fps 29 fps

25

Figure 7: Estimation of the single frame processing latency (predict()-single) using appropriate messages printed in the
application software level.

4.2. Security pillar cryptography runnable

4.2.1. Description
As algorithmic complexity is gradually increasing, hardware designers and implementers need
advanced tools to assist them in designing complex algorithm hardware implementations. HLS
tools, as discussed above, aim to automate the hardware implementation process by generating
the actual RTL implementation from user-provided C, C++, System-C, or OpenCL input code along
with a series of configuration directives (i.e., pragmas).

However, the performance of the generated design in terms of computational speed and required
resources is related to the appropriate setup of the HLS pragmas. The inference of required
pragmas to produce the right interface for each code function arguments and to pipeline loops
and functions within the input code is not a straightforward process since familiarity with the
algorithmic flow, the target hardware/Programmable Logic resources (e.g., FPGA LUTs, BRAMS,
DSPs) as well as state-of-the art hardware design and optimization techniques (e.g., loop unrolling,
pipelining and parallel processing etc.) are needed.

In the security and cryptography research domain, one of the latest trends, given the evolution
of quantum computing, is the research and development of postquantum cryptography
algorithms, i.e., algorithms that will withstand the quantum computer crypto-analytic capacity.
Most of such algorithms rely on Lattice-based computing, i.e., Lattice-based cryptography (LBC).

However, as many cryptography solutions, LBC has considerable computational complexity since
it relies on matrix/lattice operations over finite field polynomial representations. In order to
implement such algorithms in hardware (or hardware programmable logic/FPGAs) hardware
engineers need to fully understand the algorithm’s inner workings. The complexity of such a task

26

indicates that the HLS tool design path can be a good alternative to traditional RTL design. Several
researchers have shown that such an approach does have merit and can lead to good results so
long as the right pragmas are used.

In the latest round of National Institute of Standards and Technology (NIST) contest relative to
cryptography several Postquantum Cryptography (PQC) algorithms are proposed that could be
robust against attacks from Quantum computers in the future. Candidates are using the Number
Theoretic Transform (NTT) multiplication, in order to decrease the multiplication complexity
between two polynomials from O(N) to O(n*log(n)). Multiplication is the main bottleneck of these
algorithms, that’s why optimization and further development of the existing proposed
implementations is so crucial.

Our contribution relies into optimizing the memory access scheme of NTT and Inverse-NTT (INNT),
in order to have multiple parallel reads/writes. This happens by minimizing the memory-
dependency between NTT/INTT processing elements and increase parallel memory-access of
these elements by forcing the HLS tool to bypass the dependence, as long as our memory scheme
allows it.

4.2.1.1. NTT/INTT basic algorithm

In this section we review the NTT which corresponds to a Fast Fourier Transform (FFT) where the
roots of unity are taken from a finite ring instead of the complex numbers. The n-point FFT with
𝑛𝑛 = 2𝑘𝑘 is an efficient method to evaluate a polynomial

𝑎𝑎(𝑥𝑥) = �𝑎𝑎𝑗𝑗 ∗ 𝑥𝑥𝑗𝑗
𝑛𝑛−1

𝑗𝑗=0

 𝑒𝑒 𝑍𝑍[𝑥𝑥]

in the 𝑛𝑛-th roots of unity 𝑤𝑤𝑛𝑛𝑖𝑖 for 𝑖𝑖 = 0, … ,𝑛𝑛 − 1, where 𝑤𝑤𝑛𝑛 denotes a primitive n-th root of unity.
More precisely, on input we do have the coefficients 𝑎𝑎_0, . . ,𝑎𝑎_(𝑛𝑛 − 1) and 𝑤𝑤𝑛𝑛, the FFT computes:

𝐹𝐹𝐹𝐹𝐹𝐹(𝑎𝑎𝑗𝑗,𝑤𝑤𝑛𝑛) = [𝑎𝑎𝑗𝑗 ∗ (𝑤𝑤𝑛𝑛0),𝑎𝑎𝑗𝑗 ∗ (𝑤𝑤𝑛𝑛1), . . ,𝑎𝑎𝑗𝑗 ∗ (𝑤𝑤𝑛𝑛𝑛𝑛−1)]

in O(n*logn) time. Due to the orthogonality relations between the n-th roots of unity, we can
compute the inverse-FFT simply as the NTT replaces the complex roots of unity by roots of unity
in a finite ring 𝑍𝑍𝑞𝑞 (twiddle factors). Since we require elements of order 𝑛𝑛, 𝑞𝑞 is chosen to be a
prime with 𝑞𝑞 = 1 𝑚𝑚𝑚𝑚𝑚𝑚 2𝑛𝑛.

The basic algorithm which relies on the Cooley-Tukey (CT) approach can be seen below in
Algorithm 1.

27

The input of the algorithm is a polynomial 𝑎𝑎(𝑥𝑥) in the time domain and the output is the
polynomial 𝑎𝑎�(𝑥𝑥) in the spectral domain.

The same applies to the INTT algorithm, which is based on CT approach too. The algorithm takes
as input the 𝑎𝑎�(𝑥𝑥) from the spectral domain and outputs the inverse NTT polynomial a(x) to the
time domain. The INTT algorithm can be seen below on Algorithm 2.

28

Both NTT and INTT immediately leads to a fast multiplication algorithm in the ring, given two
polynomials 𝑎𝑎, 𝑏𝑏 . As such, we can easily compute their product 𝑐𝑐 = 𝑎𝑎 ∗ 𝑏𝑏 , by computing the
following:

𝑐𝑐 = 𝑁𝑁𝐹𝐹𝐹𝐹𝑤𝑤_𝑛𝑛
−1 (𝑁𝑁𝐹𝐹𝐹𝐹𝑤𝑤𝑛𝑛(𝑎𝑎) ∗ 𝑁𝑁𝐹𝐹𝐹𝐹𝑤𝑤𝑛𝑛(𝑏𝑏)) ,

where * denotes point-wise multiplication.

4.2.2. Deployed HLS pragmas
In order to bypass the dependencies of the inner loop and optimize the algorithm in terms of
area, by reusability, time using pipeline and parallel execution, there is a need to introduce some
directives for the compiler, called pragmas, which indicate to the compiler what optimization
needs to be applied.

Our deployment is an Iterative n-point NTT Algorithm architecture that uses the Cooley-Tukey
butterfly approach, which consists of log2(𝑛𝑛) stages, where Processing Elements (PE) need to be
executed on each stage. The input to the algorithm consists of the array of 𝑛𝑛 coefficients â, the
array of 𝑛𝑛 pre-computed twiddle factors (based on n-th root of unity 𝜔𝜔𝑛𝑛) and 𝐵𝐵 which is the
number of parallel executed PEs on each stage. The coefficients â are updated on each stage,
based on each PE’s execution, as can be seen in lines 22–24 of Algorithm 3. Relative to the

29

modular reduction of line 22, we are applying the Montgomery reduction algorithm. The HLS-
friendly CT algorithm can be seen in Algorithm 3 and our implementation used B equal to 2.

As a starting point of our design and analysis, we adopted the code-architecture of a literature
implementation where memory-indexing on each PE execution is not dependent of the two outer

30

loops, as in Algorithm 1, and parallel PE calculation is applied. This will be the base architecture
of our proposed design. The first inner loop, i.e., the PE-execution loop, of Algorithm 1 is divided
into four parts. Each PE calculates the corresponding memory-access indices (IDX LOOP), then the
â and ω values are loaded from memory (MEM READ LOOP), the CT butterfly operations and
Montgomery reduction (OP LOOP) are applied and results are written back to memory (MEM
WRITE LOOP). This helps the synthesizer to find a better solution, as the code is more structured.
The restructured code can be seen in Algorithm 3 above. The HLS pragmas that were used in the
HLS tools can be seen in Table 10 below.

Table 10. Initial Version HLS Pragmas

Code HLS-Pragma
𝑗𝑗,𝑘𝑘, 𝑖𝑖𝑒𝑒 , 𝑖𝑖𝑜𝑜 , 𝑖𝑖𝑤𝑤,𝑤𝑤 array_partition complete
𝑈𝑈,𝑉𝑉,𝑊𝑊,𝐸𝐸,𝑂𝑂 array_partition complete

𝑎𝑎� array_partition block factor=8
BUTTERFLY_LOOP pipeline

IDX/READ/OP/WRITE_LOOP unroll

After synthesis, based on reports produced by the HLS synthesizer, we realized that the HLS tool
using the Algorithm 3 code could not resolve the memory-dependency between MEM READ
LOOP and MEM WRITE LOOP, which is a write-after-read dependency. This highlights the
necessity for a code modification that will result in a full independence between the two
mentioned loops.

In order to resolve the memory-access dependency between read and write operations, we
adopted a technique which is used in Fast Fourier Transform (FFT), and adapted it in our NTT
domain. This path required two Dual Port RAMs and was applied for 𝐵𝐵 = 2, as each PE required
two parallel memory-accesses concurrently.

The proposed optimized restructured code using the above technique is presented in Algorithm
4 below. There are several differences between Algorithm 4 and Algorithm 3. The â variable
corresponding to memory units in the FPGA implementation, is now split into two variables one
for odd-parity and one for even. This will lead the HLS tool to produce two different memories
for â that can be accessed through two dual port RAMs

31

In Algorithm 4, the synthesizer achieved a 20% decrease in latency and drastically reduced
resources usage, as seen in Table 11.

32

Table 11. Results and comparison for n=256, 23-bit Montgomery Modulo Reduction

Version Latency
(Clock Cycles)

LUT FF BRAM DSP B

OpenCL 4382 36785 30834 9 0 2
Alg3 3987 4596 3825 39 14 2
Alg4 3218 2661 1735 7 12 2
HLS 5123 979 - 6 6 1
HLS 3075 12565 - 48 32 8

Using only this technique however, it can be observed that the dependency between the MEM
READ LOOP and MEM WRITE LOOP is not fully resolved by the HLS tool. To solve the issue, the
DEPENDENCE pragma has to be used. The DEPENDENCE pragma is used to provide additional
information to the HLS synthesizer in order to overcome loop-carry dependencies and allow loops
to be pipelined, or pipelined with lower intervals, for a specific variable. There are two options
available, intra and inter which specifies whether the dependence is within the same loop
iteration or in different loop iteration, respectively. Also, there are three directions available,
Read-After-Write (RAW), Write-After-Read (WAR) and Write-After-Write (WAW).

Using our proposed memory-access scheme from FFT, it can be assured that there are no loop-
carry dependencies or same index between inner-loops, so the DEPENDENCE pragma with inter
false can be freely applied to Algorithm 4, which we call Algorithm 4∗ to distinguish the usage of
different pragmas. More specifically, this pragma is applied to â with inter option inside the
BUTTERFLY LOOP, between line 4 and 5, to solve this dependency. As a result, a 50% decrease in
latency was achieved compared to the original Algorithm 4 with a negligible increase in resources.

Table 12. Optimized Memory-Access HLS Pragmas

Code HLS-Pragma
𝑗𝑗,𝑘𝑘, 𝑖𝑖𝑒𝑒 , 𝑖𝑖𝑜𝑜 , 𝑖𝑖𝑤𝑤,𝑤𝑤 array_partition complete
𝑈𝑈,𝑉𝑉,𝑊𝑊,𝐸𝐸,𝑂𝑂 array_partition complete

𝑎𝑎� array_partition block factor=8
BUTTERFLY_LOOP pipeline

IDX/READ/OP/WRITE_LOOP unroll
BUTTERFLY_LOOP: variable 𝑎𝑎� dependence inter false

Our proposed optimized algorithm 4* has as an addition the false data-dependency pragma
which was applied on variable â, as can be seen on Table 12. Leading to further reduction of area
and latency of the design, displayed on Table 13. The same HLS architecture could be applied for
INTT with minor differences, based on what we already discussed

33

Table 13. Results and comparison between Algorithm 4 and Algorithm 4*

Version Latency
(Clock Cycles)

LUT FF BRAM DSP B

Alg4 3218 2661 1735 7 12 2
Alg4* 1685 2590 1885 7 12 2

34

4.2.3. Demonstration, usage example and validation

Our demo utilizes the NTT and Inverse-NTT modules to create an NTT-multiplier. Codes can be
found in https://gitlab.com/elkady.alexander/ntt/-
/blob/main/codes/vitis_files/ntt_multiplyer/kernels/myNTT_multiplyer.cpp .
The top level function of our kernel can be seen bellow:

Our interface accepts as input the coefficients 𝑎𝑎(𝑁𝑁) and 𝑏𝑏(𝑁𝑁) in a single array 𝑎𝑎, which are then
inserted in our local RAMs 𝑙𝑙𝑚𝑚𝑐𝑐𝑎𝑎𝑙𝑙𝑙𝑙𝑒𝑒𝑙𝑙𝑙𝑙_𝑎𝑎 and 𝑙𝑙𝑚𝑚𝑐𝑐𝑎𝑎𝑙𝑙𝑙𝑙𝑒𝑒𝑙𝑙𝑙𝑙_𝑏𝑏 , being dual-port 2-block RAMs as
indicated by the pragmas right below their initialization. Then we run two NTT-functions labeled
NTTA and NTTB for the inputs 𝑎𝑎 and 𝑏𝑏 respectively, the outputs are saved in the same input-
memory of the functions. We continue with the dotMultiplication, which multiplies the outputs
of the NTT-functions and applies Montgomery-reduction. The output of the dotMultiplication is
saved in a separate RAM 𝑙𝑙𝑚𝑚𝑐𝑐𝑎𝑎𝑙𝑙𝑙𝑙𝑒𝑒𝑙𝑙𝑙𝑙_𝑐𝑐 for convenience (we could re-use on of the two RAMs we

https://gitlab.com/elkady.alexander/ntt/-/blob/main/codes/vitis_files/ntt_multiplyer/kernels/myNTT_multiplyer.cpp
https://gitlab.com/elkady.alexander/ntt/-/blob/main/codes/vitis_files/ntt_multiplyer/kernels/myNTT_multiplyer.cpp

35

already initialized). At the end we write the output of the Inverse-NTT, which is saved in
𝑙𝑙𝑚𝑚𝑐𝑐𝑎𝑎𝑙𝑙𝑙𝑙𝑒𝑒𝑙𝑙𝑙𝑙_𝑐𝑐, in our input single array 𝑎𝑎.

Figure 8 depicts the performance and result estimations from synthesizing the module and
passing it to the HLS synthesizer:

Figure 8: NTT Multiplication performance and result estimations

Figure 8 provides the area-utilization and latency of each module discussed above. From the HLS
log it can be concluded that there are many optimizations that could be done in order to bypass
the II Violation and decrease the latency of some modules. It could be mentioned here that
roundblock corresponds to the InverseNTT, a label inside the Inverse-NTT function.

As a case study, we adopted the NTT computation of Dilithium Digital Signature scheme that uses
a q value of 23 bits and 𝑛𝑛 =256. The proposed approach can be applied to other NTT versions
with different parameters. On each PE execution we need to calculate the corresponding input
memory-indices for both arrays â and 𝜔𝜔𝑛𝑛, then access the corresponding values of the arrays,
execute PE calculations based on these values and finally update the coefficient array â with the
previously calculated values.

As such, this multiplier is compared with the NTT-multiplier inside the Dilithium-Project based on
the test_mul.c function (https://github.com/pq-
crystals/dilithium/blob/master/ref/test/test_mul.c) .

The verification code can be found in the git-project https://gitlab.com/elkady.alexander/ntt/-
/blob/main/codes/vitis_files/ntt_multiplyer/src/test/test_myNTT_multiplyer.cpp.

• At the start of the test we initialize our device with the initialize_device function.
• On lines 96 we have the outer loop of testing and on line 98 the inner loop based on

number of polynomials 𝑝𝑝𝑚𝑚𝑙𝑙𝑝𝑝𝑁𝑁𝑝𝑝𝑚𝑚.
• On lines 99-104 we produce some randoms polynomials and we insert them in the

corresponding memories 𝑛𝑛𝑚𝑚𝑛𝑛𝑛𝑛 and 𝑤𝑤𝑖𝑖𝑤𝑤ℎ𝑛𝑛𝑛𝑛 corresponding to C-run and device HLS-run
respectively.

https://github.com/pq-crystals/dilithium/blob/master/ref/test/test_mul.c
https://github.com/pq-crystals/dilithium/blob/master/ref/test/test_mul.c
https://gitlab.com/elkady.alexander/ntt/-/blob/main/codes/vitis_files/ntt_multiplyer/src/test/test_myNTT_multiplyer.cpp
https://gitlab.com/elkady.alexander/ntt/-/blob/main/codes/vitis_files/ntt_multiplyer/src/test/test_myNTT_multiplyer.cpp

36

• On lines 110-127 we run the multiplication based on our CPU C-code and we save the
execution time.

• On lines 132-158 we run the multiplication based on our device HLS-run and we save the
execution time.

• At the end, on lines 165-174 we compare the results of CPU-run and device-run in order
to validate our design.

• On lines 176-185 we print the corresponding execution-times.

As a first step, utilizing Vitis we ran the test in a Software-Emulation mode and we debugged our
code based on QEMU and XRT utilities. Then after the verification process of Software-Emulation,
we deployed it to the Xilinx zcu104 device, and we got the following results on our terminal (based
on SSH):

Figure 9: NTT Multiplication performance and result estimations

Our setup specification include a Cortex-M CPU running at 1.3GHz and an FPGA running at
150MHz. Table 14 shows the final results.

37

Table 14. NTT multiplication Results

 CPU-run Zcu104-run I/O Zcu104-kernel
Run-time in ns 80048 596649 134346
Clock Cycles 61575384615 3977660 895640

As we can see the clock-operation of our design and the corresponding latency is negligible in
comparison with the CPU times. The big difference in frequency of the two devices, leads the CPU
run time to be less than our device. We need to mention here that FPGAs are used for base-
designs which are further implemented in ASICs, where frequencies are much higher from
150Mhz.

5. SW Runnables

5.1. DSM application
The functionality of the DSM application implemented in FPGA by UoP has been described in Section 4.1
and Figure 2. Part of the functionality of the predict() routines described in Figure 3 is implemented in HW
as described in Sections 4.1.2 and 4.1.3.

5.1.1. SW Runnables of the DSM application implemented in FPGA

More specifically the functionality of the Regressor::predict() and Tree::predict() routines shown in Figure
3 were implemented by the HW kernel called predict_tree(). The rest of the functionality of the DSM
application has been implemented in SW. The HW kernel predict_tree() is initiated within the top level
Tracker::predict() routine of Figure 3. A full software implementation of the predict_tree() routine has
also been released serving as a reference to compare the speed of the developed alternative versions of
predict_tree() according to the ERT model employed.

5.1.2. OpenCL attributes in the DSM application implemented in FPGA

The HW kernels described in section 4.1.3 are called within the Tracker::predict() top level function in
each cascade stage iteration. In the Xilinx Vitis environment calling a HW kernel requires some specific
steps implemented with OpenCL commands and these steps are listed in Table 15.

Table 15: The steps describing how a hardware kernel is loaded in the FPGA using Xilinx XRT.

1 Detect device, platform and create Command Queue for the context of this device
2 Define and load the xclbin file with the bitstream of the hardware kernels
3 Create a Program from the device, context and the bitstream
4 Define the kernel name in the Program
5 Prepare the memory buffers with the kernel arguments
6 Enqueue and set the kernel arguments
7 Start the kernel (enqueue the kernel task)

38

8 Prepare the buffer for the return values of the kernel
9 Wait for the kernel to finish (if InOrder execution is used)

Steps 1-4 can be performed during initialization. Thus they can be executed within the predict_prepare()
routine of Figure 2. Loading and enqueuing arguments (steps 5-6) that do not change between successive
kernel calls can also be performed during initialization. The rest of the arguments are prepared and
enqueued from the Tracker::predict() routine along with the rest of the steps described in Table 15. The
OpenCL commands that implement the steps of this table are the following:

Predict_prepare():

char xclbinFilename[32];
strcpy(xclbinFilename,"binary_container_1.xclbin");

std::vector<cl::Device> devices;
cl::Device device;
std::vector<cl::Platform> platforms;
bool found_device = false;
cl::Platform::get(&platforms);
for(size_t i = 0; (i < platforms.size()) & (found_device == false) ;i++)
{
 cl::Platform platform = platforms[i];
 std::string platformName = platform.getInfo<CL_PLATFORM_NAME>();
 if (platformName == "Xilinx")
 {
 devices.clear();
 platform.getDevices(CL_DEVICE_TYPE_ACCELERATOR, &devices);
 if (devices.size())
 {
 device = devices[0];
 found_device = true;
 break;
 }
 }
}
if (found_device == false)
{
 std::cout << "[PCHRI] ERROR: Unable to find Target Device {Inside predict_prepare()}" <<
device.getInfo<CL_DEVICE_NAME>() << std::endl;
 return;
}
// Creating Context and Command Queue for selected device
data.context = cl::Context(device);
data.q= cl::CommandQueue(data.context, device, CL_QUEUE_PROFILING_ENABLE);
// Load xclbin
std::cout << "[PCHRI] MSG: Loading '" << xclbinFilename << " {Inside predict_prepare()}'\n";
std::ifstream bin_file(xclbinFilename, std::ifstream::binary);
bin_file.seekg (0, bin_file.end);
unsigned nb = bin_file.tellg();
bin_file.seekg (0, bin_file.beg);
char *buf = new char [nb];
bin_file.read(buf, nb);
// Creating Program from Binary File
cl::Program::Binaries bins;
bins.push_back({buf,nb});
devices.resize(1);
cl::Program program(data.context, devices, bins);
// This call will get the kernel object from program. A kernel is an
// OpenCL function that is executed on the FPGA.
data.krnl_trees=cl::Kernel(program,"predict_trees");

//…………….
data.btr_sr_tg=cl::Buffer(data.context, CL_MEM_READ_WRITE, sr_tg_sib);
data.btr_casc=cl::Buffer(data.context, CL_MEM_READ_WRITE, casc_sib);

39

data.btr_learningRates=cl::Buffer(data.context, CL_MEM_READ_ONLY, learningRates_sib);
data.btr_Global_node_split1=cl::Buffer(data.context,CL_MEM_READ_ONLY, Global_node_sib);
data.btr_Global_node_split2=cl::Buffer(data.context,CL_MEM_READ_ONLY, Global_node_sib);
data.btr_intensities=cl::Buffer(data.context, CL_MEM_READ_ONLY, intensities_sib);
data.btr_Global_node_thres=cl::Buffer(data.context,CL_MEM_READ_ONLY, Global_node_thres_sib);
data.btr_Global_node_mean=cl::Buffer(data.context,CL_MEM_READ_ONLY, Global_node_mean_sib);

// Set kernel arguments
data.krnl_trees.setArg(data.narg++,data.btr_sr_tg);
data.krnl_trees.setArg(data.narg++,data.tr_tg_len);
data.krnl_trees.setArg(data.narg++,data.btr_casc);
data.krnl_trees.setArg(data.narg++,data.btr_Global_node_split1);
data.krnl_trees.setArg(data.narg++,data.btr_Global_node_split2);
data.krnl_trees.setArg(data.narg++,data.btr_intensities);
data.krnl_trees.setArg(data.narg++,data.btr_Global_node_thres);
data.krnl_trees.setArg(data.narg++,data.btr_Global_node_mean);
//data.krnl_trees.setArg(data.narg++,data.btr_learningRates);

data.ptr_sr_tg = (float *) data.q.enqueueMapBuffer (data.btr_sr_tg, CL_TRUE , CL_MAP_WRITE , 0,
sr_tg_sib);
data.ptr_casc = (int*) data.q.enqueueMapBuffer (data.btr_Global_node_mean , CL_TRUE , CL_MAP_WRITE
, 0, casc_sib);
data.ptr_Global_node_split1 = (short *) data.q.enqueueMapBuffer (data.btr_Global_node_split1 ,
CL_TRUE , CL_MAP_WRITE , 0, Global_node_sib);
data.ptr_Global_node_split2 = (short *) data.q.enqueueMapBuffer (data.btr_Global_node_split2 ,
CL_TRUE , CL_MAP_WRITE , 0, Global_node_sib);
data.ptr_intensities = (float *) data.q.enqueueMapBuffer (data.btr_intensities , CL_TRUE ,
CL_MAP_WRITE , 0, intensities_sib);
data.ptr_Global_node_thres = (float *) data.q.enqueueMapBuffer (data.btr_Global_node_thres ,
CL_TRUE , CL_MAP_WRITE , 0, Global_node_thres_sib);
data.ptr_Global_node_mean = (float *) data.q.enqueueMapBuffer (data.btr_Global_node_mean , CL_TRUE
, CL_MAP_WRITE , 0, Global_node_mean_sib);

data.ptr_Global_node_split1= data.tr_Global_node_split1;
data.ptr_Global_node_split2= data.tr_Global_node_split2;
data.ptr_Global_node_thres= data.tr_Global_node_thres;
data.ptr_Global_node_mean= data.tr_Global_node_mean;
data.ptr_casc= data.tr_casc;

data.q.enqueueMigrateMemObjects(
{
 data.btr_Global_node_split1,
 data.btr_Global_node_split2,
 data.btr_Global_node_thres,
 data.btr_Global_node_mean
},0

Predict_kernel():
data.q.enqueueMigrateMemObjects(
{
 data.btr_intensities,
 data.btr_casc
},0
data.q.enqueueTask(data.krnl_trees);
data.q.enqueueMigrateMemObjects({data.btr_sr_tg},CL_MIGRATE_MEM_OBJECT_HOST);
data.q.finish();

The implementation of the all software version of the DSM application i.e., the one where predict_tree()
is implemented in software and runs on an A53 core of ZynqMP FPGA does not include any OpenCL
commands since it is called by predict_kernel as an ordinary software routine.

40

5.1.3. SW implementation of the predict_tree() kernels in the DSM application

The software implementation of the predict_tree() routine lead to an implementation of the
predict_kernel() routine with an average latency of 42ms. This latency served as a reference to compare
the acceleration achieved with the HW implementations of the predict_tree() routine. The latency of the
predict_kernel() routine is the time needed to process a single frame thus, the inverse of this latency is
the frames/sec that can be processed. Please take into consideration that the latency of 42ms has been
achieved when the fastest clock is used with the A53 ARM core (1.3GHz). Reducing the speed of the core
to the minimum clock frequency of 670MHz will double the latency. This case would be useful if the
dynamic power consumption of the ARM core has to be reduced to the half.

5.2. NTT/INTT application
The functionality of the NTT/INTT multiplication implemented in FPGA by ISI has been described
in Section 4.2. However, there are edge devices that do not include an FPGA but may include a
GPU or even have a CPU that can support parallelization. To support these devices, ISI has
implemented NTT/INTT in OpenCL explicitly for GPGPUs and CPUs (with OpenCL support).

5.2.1. SW Runnables of the NTT/INTT application.
The basic NTT and INTT algorithms which relies on the Cooley-Tukey (CT) approach can be seen
in Algorithm 1 and Algorithm 2 in Section 4.2.

A GPU can contain a large number of cores, ranging from hundred to thousands, allowing tasks
to be executed in parallel. GPUs are used for a multiple different applications, other than graphic
computations, such as machine learning and cryptography. GPUs also have on-chip memory,
which is small but fast, and off-chip memory, which is large but slow. It is up to the developer to
allocate the memory to be used as well as provide the functional computations to be performed
on the input. There are two major frameworks for heterogeneous parallel computing, NVIDIA’s
Compute Unified Device Architecture (CUDA) and the Open Computing Language (OpenCL).

Both NTT and Inverse NTT algorithms using CT-FFT are implemented using three for-loops taking
as input a polynomial in the form of a vector 𝑣𝑣 with 𝑛𝑛 values, each 𝑛𝑛𝑖𝑖 value being the coefficient
of the polynomial. The outer for-loop counts the rounds of the algorithm. The number of rounds
is equal to log2(n). In each round the vector 𝑣𝑣 is split into equal size blocks. While the number of
rounds is equal for NTT and Inverse NTT, the computations and the length of each block is slightly
different.

In NTT, each round the input vector is spilt into 2𝑟𝑟𝑜𝑜𝑟𝑟𝑛𝑛𝑟𝑟−1 blocks as can be seen in Figure 10. Each
block has a length equal to 𝑛𝑛

 2𝑟𝑟𝑟𝑟𝑟𝑟𝑛𝑛𝑟𝑟−1
 and is logically split into two halves. The two internal for-

loops, as described in Algorithm 1 – lines 5-14, execute the butterfly operations for each round in
each block by performing computations using one coefficient from the first half of the block with
the corresponding coefficient in the second half of the block, 𝑛𝑛[𝑖𝑖] , 𝑛𝑛[𝑖𝑖 + 𝑏𝑏𝑏𝑏𝑜𝑜𝑏𝑏𝑘𝑘𝑏𝑏𝑒𝑒𝑛𝑛𝑏𝑏𝑏𝑏ℎ

2
] . The

41

corresponding coefficients required for calculating the results for the next round for the second
half of the block follows a similar pattern, 𝑛𝑛[𝑖𝑖], 𝑛𝑛[𝑖𝑖 − 𝑏𝑏𝑏𝑏𝑜𝑜𝑏𝑏𝑘𝑘𝑏𝑏𝑒𝑒𝑛𝑛𝑏𝑏𝑏𝑏ℎ

2
].

Figure 10: NTT computations without initial bit reversal

It should be noted that Figure 10 does not detail the computation performed with the coefficients
as defined by the algorithm, rather it shows which coefficients are required to be processed with
each other in order to output the required input for the next round of computations. It must also
be noted that Algorithm 1 first does a bit reversal on line 1 on input vector and changes the order
of the coefficients of the polynomial in order to perform the operations and calculate the output
coefficients. While the example showed in Figure 10 does not perform the bit reversal, however
the same operations are performed and the only difference is that the output is bit reversed. Our
implementation of NTT implements Figure 10.

We can safely parallelize the computations of each round, which correspond to the two internal
for-loops, as the computations that are occurring with the corresponding coefficients 𝑛𝑛[𝑖𝑖], 𝑛𝑛[𝑖𝑖 +
𝑏𝑏𝑏𝑏𝑜𝑜𝑏𝑏𝑘𝑘𝑏𝑏𝑒𝑒𝑛𝑛𝑏𝑏𝑏𝑏ℎ

2
] in each block are independent of the other computations in all the other blocks of

the vector v in the same round and are done in parallel and not sequential and don’t depend on
results from other rounds.

In Inverse NTT, the logic is the same, but the splitting of the blocks is backwards. In each round
the vector is split into 2log2(𝑛𝑛)− 𝑟𝑟𝑜𝑜𝑟𝑟𝑛𝑛𝑟𝑟−1 blocks, which is the reverse of NTT. Each block has a
length equal to 𝑛𝑛

2log2(𝑛𝑛)− 𝑟𝑟𝑟𝑟𝑟𝑟𝑛𝑛𝑟𝑟−1. Identical to NTT, each block is logically split into two halves. The
two internal for-loops execute the butterfly operations for each round in each block by
performing computations using one coefficient of the first half of the block with the

42

corresponding coefficient in the second half of the block, 𝑛𝑛[𝑖𝑖], 𝑛𝑛[𝑖𝑖 + 𝑏𝑏𝑏𝑏𝑜𝑜𝑏𝑏𝑘𝑘𝑏𝑏𝑒𝑒𝑛𝑛𝑏𝑏𝑏𝑏ℎ
2

]. E.g. For a vector
𝑣𝑣 with 𝑛𝑛 = 256, for the first round, there are 128 blocks and the 𝑛𝑛[0] coefficient is computed
with the 𝑛𝑛[1] coefficient.

As with NTT, Inverse NTT can also have the two internal for-loops safely parallelized as, again, the
computations that are occurring with the corresponding coefficients 𝑛𝑛[𝑖𝑖] , 𝑛𝑛[𝑖𝑖 + 𝑏𝑏𝑏𝑏𝑜𝑜𝑏𝑏𝑘𝑘𝑏𝑏𝑒𝑒𝑛𝑛𝑏𝑏𝑏𝑏ℎ

2
] in

each block are independent of the other computations in all the other blocks of the vector 𝑣𝑣 in
the same round and are done in parallel.

Finally, there was also another avenue to increase the efficiency of parallel platforms by batching
computations as much as possible. Algorithms, such as discussed in I, may require the
transformation of multiple polynomials in sequence. If there are enough cores available in the
platform, we can batch the input with a number of equal sized polynomials as one input vector.

In order to implement batching, it was crucial to distinguish each index of the different polynomial
coefficients so that we can identify the block, as well as which half it belongs to. This was simply
implemented by discovering the local index of each coefficient of each polynomial based on the
index location of the input vector, the global index, by performing a modulo operation of the
global index with the size of the polynomials.

Once the local index is computed, it is easy to calculate the local block by performing the same
operations as discussed previously. This same process is applied both for the NTT and the Inverse
NTT algorithm. The output of the batching process is one vector containing the results of each
polynomial in the same sequence as the input.

5.2.2. OpenCL attributes in the NTT/INTT application

The OpenCL kernels described in section 5.2.1 are called from a host program running on the CPU. For the
host program to call an OpenCL kernel requires some specific steps implemented with OpenCL commands
and these steps are listed in Table 16.

Table 16: Steps describing how an OpenCL kernel is loaded.

1 Detect device, platform and create Command Queue for the context of this device
2 Define, compile and load the OpenCL file with the kernels
3 Create a Program from the device, context
4 Define the kernel name in the Program
5 Prepare the memory buffers with the kernel arguments
6 Enqueue and set the kernel arguments
7 Start the kernel (enqueue the kernel task)
8 Prepare the buffer for the return values of the kernel
9 Wait for the kernel to finish

43

We have build a number of helper functions:

• readKernelFile: Reads a .cl file and returns the file as buffer pointer to be compiled
• buildOpenCLProgram: Compiles the kernel file read by readKernelFile
• createKernel: Creates a specific kernel based on its name from the built OpenCL program.

char* readKernelFile(char* filename, size_t* program_size) {
 FILE* program_handle;
 int j = fopen_s(&program_handle, filename, "rb");
 if (program_handle == NULL)
 {
 return NULL;
 }
 fseek(program_handle, 0, SEEK_END);
 *program_size = ftell(program_handle);
 rewind(program_handle);
 char* program_buffer = (char*)malloc(*program_size + 1);
 if (program_buffer == NULL) {
 return NULL;
 }
 program_buffer[*program_size] = '\0';
 fread(program_buffer, sizeof(char), *program_size, program_handle);
 fclose(program_handle);
 return program_buffer;
}
int buildOpenCLProgram(unsigned int gpuID, char* program_buffer, size_t program_size, cl_program*
program, cl_context* context, cl_device_id* device) {
 //Create initial info
 cl_platform_id* platforms;
 cl_platform_id platform;
 cl_uint num_platforms;
 cl_int i, err;
 char* ext_data;
 size_t ext_size, log_size;

 char* program_log;

 //Get platforms
 err = clGetPlatformIDs(1, NULL, &num_platforms);
 if (err < 0) {
 perror("Couldn't find any platforms.");
 return err;
 }
 platforms = (cl_platform_id*)malloc(sizeof(cl_platform_id) * num_platforms);
 clGetPlatformIDs(num_platforms, platforms, NULL);
 for (i = 0; i < num_platforms; i++) {
 err = (cl_int) clGetPlatformInfo(platforms[i], CL_PLATFORM_VENDOR, 0, NULL,
&ext_size);
 if (err < 0) {
 perror("Couldn't read extension data.");
 return err;
 }
 ext_data = (char*)malloc(ext_size);
 clGetPlatformInfo(platforms[i], CL_PLATFORM_VENDOR, ext_size, ext_data, NULL);
 if (gpuID == i) {
 printf("Selected platform %d vendor: %s\n", i, ext_data);
 }
 else {
 printf("Platform %d vendor: %s\n", i, ext_data);
 }
 free(ext_data);
 }
 err = (cl_int) clGetDeviceIDs(platforms[gpuID], CL_DEVICE_TYPE_GPU, 1, device, NULL);
 if (err < 0) {
 perror("Couldn't get the first platform.");

44

 return err;
 }
 *context = clCreateContext(NULL, 1, device, NULL, NULL, &err);

 //Create program
 *program = clCreateProgramWithSource(*context, 1, (const char**)&program_buffer,
&program_size, &err);
 free(program_buffer);
 const char options[] = "-cl-mad-enable -cl-std=CL1.2";

 //Build program
 err = clBuildProgram(*program, 1, device, options, NULL, NULL);
 //If build fails, find reason
 if (err < 0) {
 clGetProgramBuildInfo(program, *device, CL_PROGRAM_BUILD_LOG, 0, NULL,
&log_size);
 program_log = (char*)calloc(log_size + 1, sizeof(char));
 clGetProgramBuildInfo(program, *device, CL_PROGRAM_BUILD_LOG, log_size + 1,
program_log, NULL);
 printf("%s\n", program_log);
 free(program_log);
 return err;
 }
 return 0;

}

int createKernel(cl_program* program, char* kernelName, cl_kernel* kernel){
 cl_int err;
 //Create kernel
 *kernel = clCreateKernel(*program, kernelName, &err);

 return err;
}

int createCommandQueue(cl_context* context, cl_device_id* device, cl_command_queue* queue)
{
 cl_int err;

 *queue = clCreateCommandQueue(*context, *device, CL_QUEUE_PROFILING_ENABLE, &err);

 return err;
}

The OpenCL commands that implement the steps of Table 16 are the following:

 char filename[30] = "NTTCL.cl";
 size_t program_size;
 char* program_buffer = readKernelFile(filename, &program_size);
 err = buildOpenCLProgram(GPU, program_buffer, program_size, &program, &context, &device);
 char kernelName[30] = "NTT_N";
 err = createKernel(&program, kernelName, &NTTkernel);
 char invKernelName[30] = "InverseNTT_N";
 err = createKernel(&program, invKernelName, &InvNTTkernel);
 char PWMKernelName[30] = "PointWiseMontgomery";
 err = createKernel(&program, PWMKernelName, &PointWiseMont);
 err = createCommandQueue(&context, &device, &queue);

polyvecNum noCL, withCL;

 for (i = 0; i < polyNum; ++i) {
 poly_uniform(&noCL.vec[i], seed, nonce++);
 memcpy(&withCL.vec[i], &noCL.vec[i], sizeof(uint32_t) * N);
 }

NTTCL_polyvecNum(&withCL);

45

InvNTTCL_polyvecNum(&withCL);

The following functions NTTCL_polyvecNum, InvNTTCL_polyvecNum and PointWiseCL_polyvecNum are
the function that create call and return the results for the NTT, INTT and Pointwise montgomerry OpenCL
kernels.

cl_ulong NTTCL_polyvecNum(polyvecNum* a)
{
 extern cl_context context;
 extern cl_kernel NTTkernel;
 extern cl_command_queue queue;

 cl_int err;

 cl_event prof_event;
 cl_ulong cl_tstart, cl_tend;

 cl_mem in_buff, out_buff, temp_buff;
 size_t global_size = N * polyNum;

 in_buff = clCreateBuffer(context, CL_MEM_READ_WRITE | CL_MEM_COPY_HOST_PTR,
sizeof(cl_uint) * global_size, a, &err);
 out_buff = clCreateBuffer(context, CL_MEM_WRITE_ONLY | CL_MEM_HOST_READ_ONLY,
sizeof(cl_uint) * global_size, NULL, &err);

 uint32_t num = N;

 err = clSetKernelArg(NTTkernel, 0, sizeof(num), &num);
 err = clSetKernelArg(NTTkernel, 1, sizeof(cl_mem), &in_buff);
 // err = clSetKernelArg(NTTkernel, 2, sizeof(cl_uint) * global_size, NULL);
 err = clSetKernelArg(NTTkernel, 2, sizeof(cl_mem), &out_buff);

 size_t work_units_per_kernel = units_kernel;
 if (global_size < units_kernel)
 work_units_per_kernel = global_size;

 err = clEnqueueNDRangeKernel(queue, NTTkernel, 1, NULL, &global_size,
&work_units_per_kernel, 0, NULL, &prof_event);
 err = clEnqueueReadBuffer(queue, out_buff, CL_TRUE, 0, sizeof(cl_uint) * global_size, a,
0, NULL, NULL);

 err = clGetEventProfilingInfo(prof_event, CL_PROFILING_COMMAND_START, sizeof(cl_tstart),
&cl_tstart, NULL);
 err = clGetEventProfilingInfo(prof_event, CL_PROFILING_COMMAND_END, sizeof(cl_tend),
&cl_tend, NULL);

 err = clReleaseMemObject(in_buff);
 err = clReleaseMemObject(out_buff);
 return cl_tend - cl_tstart;
}

cl_ulong InvNTTCL_polyvecNum(polyvecNum* a) {
 extern cl_context context;
 extern cl_kernel InvNTTkernel;
 extern cl_command_queue queue;

 cl_int err;

 cl_event prof_event;
 cl_ulong cl_tstart, cl_tend;

 cl_mem in_buff, out_buff, temp_buff, temp_buff2;
 size_t global_size = N * polyNum;

 in_buff = clCreateBuffer(context, CL_MEM_READ_WRITE | CL_MEM_COPY_HOST_PTR,
sizeof(cl_uint) * global_size, a, &err);

46

 temp_buff = clCreateBuffer(context, CL_MEM_READ_WRITE | CL_MEM_COPY_HOST_PTR,
sizeof(cl_uint) * global_size, a, &err);
 temp_buff2 = clCreateBuffer(context, CL_MEM_READ_WRITE | CL_MEM_COPY_HOST_PTR,
sizeof(cl_uint) * global_size, a, &err);
 out_buff = clCreateBuffer(context, CL_MEM_WRITE_ONLY | CL_MEM_HOST_READ_ONLY,
sizeof(cl_uint) * global_size, NULL, &err);

 uint32_t num = N;

 err = clSetKernelArg(InvNTTkernel, 0, sizeof(num), &num);
 err = clSetKernelArg(InvNTTkernel, 1, sizeof(cl_mem), &in_buff);
 //err = clSetKernelArg(InvNTTkernel, 3, sizeof(cl_uint) * global_size, NULL); //This is a
local buffer. No need to it set up
 err = clSetKernelArg(InvNTTkernel, 2, sizeof(cl_mem), &temp_buff); //This is now a global
buffer. No need to it set up
 err = clSetKernelArg(InvNTTkernel, 3, sizeof(cl_mem), &temp_buff2); //This is a local
buffer. No need to it set up
 err = clSetKernelArg(InvNTTkernel, 4, sizeof(cl_mem), &out_buff);

 size_t work_units_per_kernel = units_kernel;
 if (global_size < units_kernel)
 work_units_per_kernel = global_size;

 err = clEnqueueNDRangeKernel(queue, InvNTTkernel, 1, NULL, &global_size,
&work_units_per_kernel, 0, NULL, &prof_event);
 err = clEnqueueReadBuffer(queue, out_buff, CL_TRUE, 0, sizeof(cl_uint) * global_size, a,
0, NULL, NULL);
 err = clGetEventProfilingInfo(prof_event, CL_PROFILING_COMMAND_START, sizeof(cl_tstart),
&cl_tstart, NULL);
 err = clGetEventProfilingInfo(prof_event, CL_PROFILING_COMMAND_END, sizeof(cl_tend),
&cl_tend, NULL);
 err = clReleaseMemObject(in_buff);
 err = clReleaseMemObject(temp_buff);
 err = clReleaseMemObject(temp_buff2);
 err = clReleaseMemObject(out_buff);
 return cl_tend - cl_tstart;
}

cl_ulong PointWiseCL_polyvecNum(polyvecNum* result, polyvecNum* a, polyvecNum* b) {
 extern cl_context context;
 extern cl_kernel PointWiseMont;
 extern cl_command_queue queue;

 cl_int err;

 cl_event prof_event;
 cl_ulong cl_tstart, cl_tend;

 cl_mem in_buff, in_buff2, out_buff;
 size_t global_size = N * polyNum;

 in_buff = clCreateBuffer(context, CL_MEM_READ_WRITE | CL_MEM_COPY_HOST_PTR,
sizeof(cl_uint) * global_size, a, &err);
 in_buff2 = clCreateBuffer(context, CL_MEM_READ_WRITE | CL_MEM_COPY_HOST_PTR,
sizeof(cl_uint) * global_size, b, &err);
 out_buff = clCreateBuffer(context, CL_MEM_WRITE_ONLY | CL_MEM_HOST_READ_ONLY,
sizeof(cl_uint) * global_size, NULL, &err);

 err = clSetKernelArg(PointWiseMont, 0, sizeof(cl_mem), &in_buff);
 err = clSetKernelArg(PointWiseMont, 1, sizeof(cl_mem), &in_buff2);
 err = clSetKernelArg(PointWiseMont, 2, sizeof(cl_mem), &out_buff);

 size_t work_units_per_kernel = units_kernel;
 err = clEnqueueNDRangeKernel(queue, PointWiseMont, 1, NULL, &global_size,
&work_units_per_kernel, 0, NULL, &prof_event);
 err = clEnqueueReadBuffer(queue, out_buff, CL_TRUE, 0, sizeof(cl_uint) * global_size,
result, 0, NULL, NULL);

47

 err = clGetEventProfilingInfo(prof_event, CL_PROFILING_COMMAND_START, sizeof(cl_tstart),
&cl_tstart, NULL);
 err = clGetEventProfilingInfo(prof_event, CL_PROFILING_COMMAND_END, sizeof(cl_tend),
&cl_tend, NULL);

 err = clReleaseMemObject(in_buff);
 err = clReleaseMemObject(out_buff);
 return cl_tend - cl_tstart;
}

The following are the OpenCL kernel files for NTT, INTT and PointwiseMontgomery:

__kernel void NTT_N(const unsigned int coN, __global unsigned int* data, __global unsigned int*
outData)
{
 size_t globalId = get_global_id(0);
 //We may have more than one polynomial. In this case, we need to find the local block id
(in our 256 block length). Thus localId = globalId % 256;
 size_t localId = globalId % coN;
 //The number of rounds is the log2(coN)
 unsigned int rounds = (unsigned int)log2((float)coN);

 //Loop: The round number we're in. Starts from 1 and ends with 8.
 unsigned int loop;
 //StartingZeta: The Zeta starting point for the round.
 unsigned int sz;
 //OffsetZeta: The offset zeta for the inner loop of the round
 unsigned int ofz;
 //Block number: The block in the round
 unsigned int block;
 //Len: the length of each block in the round.
 unsigned int len;
 //CurrentZeta: The zeta value
 unsigned int zeta;
 int localTemp;
 //localData[globalId] = data[globalId];
 barrier(CLK_GLOBAL_MEM_FENCE);
 for (loop = 1; loop <= rounds; ++loop) {
 //Each loop has a number of blocks.
 //Starting at 256, the first loop has two blocks of 128 ints.
 //Next loop has 4 blocks of 64 bits. Each round has twice more blocks than the
previous.
 //As such the length of each block is 256/(2^loop). The total number of ints
divided by the 2^loop (1->2, 2->4, 3-->8, 4-->16, etc..)
 len = coN >> loop;
 //Calculate Starting Zeta of the round.
 //First round is 1, second round is 2, third round is 4, fourth round is 8,...
 //Therefore Starting Zeta is 2^(loop-1)
 sz = 1 << (loop - 1);
 //Calculate Offset Zeta for the block of the round.
 //For the first round both blocks have the same zeta. sz+0
 //For the second round the first two blocks have sz+0, the second two blocks
have sz+1
 //For the third round the first two blocks have sz+0, the second two blocks have
sz+1, the next two blocks have sz+2 and the last two blocks have sz+3
 //We need to find the position of the int based on the location. Round Down of
div globalId/(len*2) will give us the block number
 ofz = sz + localId / (len * 2);
 //Now that we have the zeta offset we can get the zeta.
 zeta = zetas[ofz % 256];
 //We need to find the block id. Therefore the block number is:
 block = localId / len;
 //Calculate Temp value. If we're at the first half of the block we need to
calculate the temp with offset of len:
 if (block % 2 == 0) {
 localTemp = montgomery_reduce((unsigned long)zeta * data[globalId +
len]);

48

 }
 //If we're at the second half of the block we don''t have to use the offset
 else {
 localTemp = montgomery_reduce((unsigned long)zeta * data[globalId]);
 }
 //Block here for everyone to catch up
 barrier(CLK_GLOBAL_MEM_FENCE);
 if (block % 2 != 0) {
 data[globalId] = data[globalId - len] + 2 * Q - localTemp;
 }
 //Block here for everyone to catch up
 barrier(CLK_GLOBAL_MEM_FENCE);
 if (block % 2 == 0) {
 data[globalId] = data[globalId] + localTemp;
 }
 //Block here for everyone to catch up
 barrier(CLK_GLOBAL_MEM_FENCE);
 }
 outData[globalId] = data[globalId];
 //outData[globalId] = rounds;
}

__kernel void InverseNTT_N(const unsigned int coN, __global unsigned int* data, __global unsigned
int* localData, __global unsigned int* localTemp, __global unsigned int* outData)
{
 size_t globalId = get_global_id(0);
 //We may have more than one polynomial. In this case, we need to find the local block id
(in our 256 block length). Thus localId = globalId % 256;
 size_t localId = globalId % coN;
 //The number of rounds is the log2(coN)
 unsigned int rounds = (unsigned int)log2((float)coN);

 //Loop: The round number we're in. Starts from 1 and ends with 8.
 unsigned int loop;
 //StartingZeta: The Zeta starting point for the round.
 unsigned int sz;
 //OffsetZeta: The offset zeta for the inner loop of the round
 unsigned int ofz;
 //Block number: The block in the round
 unsigned int block;
 //Len: the length of each block in the round.
 unsigned int len;
 //CurrentZeta: The zeta value
 unsigned int zeta;
 localData[globalId] = data[globalId];
 barrier(CLK_GLOBAL_MEM_FENCE);

 for (loop = rounds; loop > 0; --loop) {
 //Each loop has a number of blocks.
 //Starting at 256, the first loop has two blocks of 128 ints.
 //Next loop has 4 blocks of 64 bits. Each round has twice more blocks than the
previous.
 //As such the length of each block is 256/(2^loop). The total number of ints
divided by the 2^loop (1->2, 2->4, 3-->8, 4-->16, etc..)
 len = coN >> loop;
 //Calculate Starting Zeta of the round.
 //First round is 0, second round is 1, third round is 3, fourth round is 8,...
 //Therefore Starting Zeta is 2^(loop-1)
 //sz = (1 << (8 - loop));
 sz = coN - (1 << (loop));
 //Calculate Offset Zeta for the block of the round.
 //For the first round both blocks have the same zeta. sz+0
 //For the second round the first two blocks have sz+0, the second two blocks
have sz+1
 //For the third round the first two blocks have sz+0, the second two blocks have
sz+1, the next two blocks have sz+2 and the last two blocks have sz+3
 //We need to find the position of the int based on the location. Round Down of
div globalId/(len*2) will give us the block number
 ofz = sz + localId / (len * 2);

49

 //Now that we have the zeta offset we can get the zeta.
 zeta = zetas_inv[ofz % 256];
 //We need to find the block id. Therefore the block number is:
 block = localId / len;
 if (block % 2 == 0) {
 localTemp[globalId] = localData[globalId];
 localData[globalId] = localData[globalId] + localData[globalId + len];
 barrier(CLK_GLOBAL_MEM_FENCE);
 }
 barrier(CLK_GLOBAL_MEM_FENCE);
 //Block here for everyone to catch up
 if (block % 2 == 1) {
 localData[globalId] = montgomery_reduce((unsigned long)zeta *
(localTemp[globalId - len] + 256 * Q - localData[globalId]));
 barrier(CLK_GLOBAL_MEM_FENCE);
 }
 }
 //Block here for everyone to catch up
 outData[globalId] = montgomery_reduce((unsigned long)f * localData[globalId]);
}

__kernel void PointWiseMontgomery(__global unsigned int* a, __global unsigned int* b, __global
unsigned int* outData)
{
 //Get ID
 size_t globalId = get_global_id(0);
 //Calculate pointwise multiplication
 outData[globalId] = montgomery_reduce((unsigned long)a[globalId] * b[globalId]);
}

5.2.3. SW implementation of the NTT, INTT
As a testing environment, we implemented our work on an Intel i7-7700 CPU with 3.6 Ghz
frequency hosting an NVIDIA GTX 1050 Ti GPU with 786 cores running Windows 10. The selection
criteria of this GPU was the utilization of an average performance commercial device. Running
our NTT/INTT implementation for the Dilithium with 256 number of coefficients and a batch size
of 4, the CPU requires 6,4 seconds, while the OpenCL code requires 10 seconds. The main
bottleneck that creates this disparity is the memory transfer between the CPU and GPU.

With a larger number of coefficients and different batch size, our final results showed that there
is a potential speed up against the CPU, with a maximum of speed up around 7.5x times
depending on the number of input coefficients. We found that for an average number of 1664
coefficients the GPU kernel execution time is on par with the CPU and after that there is significant
gain on using the GPU.

6. Conclusions

In the above deliverable the work done in T5.1 of CPSoSaware WP5 has been presented. The
work is focused on showcasing how complex runnable can be produced in hardware and in
software using HLS tools and/or purely OpenCL compilers (for hardware and software
respectively). The work of D5.1 is the last part of a series of tasks that aim to model, design,
optimize and eventually implement efficiently CPS and CPSoS applications that are in line with
the project activities.

	1. Executive Summary
	2. Introduction
	3. HLS workflow using Xilinx Vitis Toolset
	3.1. Generic Vitis HLS workflow
	3.2. Workflow followed in the development of the DSM application implemented in FPGA

	4. HW Runnables
	4.1. FPGA HW runnables for the DSM application
	4.1.1. Description
	4.1.2. Employed HLS pragmas
	4.1.2.1. Local data processing
	4.1.2.2. Pipeline and Loop Unrolling
	4.1.2.3. Kernel argument passing through wider ports
	4.1.3. Demonstration/ Usage example/Validation
	4.1.3.1. HW Kernels developed in the DSM application implemented in FPGA
	4.1.3.2. Datasets
	4.1.3.3. ERT models developed
	4.1.3.4. Accuracy of the models
	4.1.3.5. Speed, power consumption and resources of the models tested in Vitis-ZCU102
	4.2. Security pillar cryptography runnable
	4.2.1. Description
	4.2.1.1. NTT/INTT basic algorithm
	4.2.2. Deployed HLS pragmas
	4.2.3. Demonstration, usage example and validation

	5. SW Runnables
	5.1. DSM application
	5.1.1. SW Runnables of the DSM application implemented in FPGA
	5.1.2. OpenCL attributes in the DSM application implemented in FPGA
	5.1.3. SW implementation of the predict_tree() kernels in the DSM application
	5.2. NTT/INTT application
	5.2.1. SW Runnables of the NTT/INTT application.
	5.2.2. OpenCL attributes in the NTT/INTT application
	5.2.3. SW implementation of the NTT, INTT

	6. Conclusions

