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Executive Summary 

The scope of this deliverable, “Preliminary Version of CPSoSaware Integrated Platform”, is to present the 
integration and cross level optimization approaches and implementations of the CPSoSaware technical 
components as defined, described, implemented and reported in previous deliverables ( [1] [2]). Since the 
respective task (T5.2) is still in progress, these activities will be finalized and reported in the next 
deliverable D5.4 (Final Version of CPSoSaware Integrated Platform). 

More specifically in this Deliverable: 

 Section 1 describes the objectives and the context of this delivable 

 Section 2 gives the overall CPSoSaware architecture with respect to the interfaces and interactions 
among the components 

 Section 3 present a continuous integration and continuous deployment approach and methodology 

 Section 4 describes thoroughly the integration efforts performed on scene analysis/understanding and 
localization components 

 Section 5 is devoted to security runtime monitoring and management components 

 Section 6 presents hardware acceleration components and how they are demonstrated through stand 
alone applications 

 Section 7 describes the developments conducted on the components related to intra – communications 
of the CPSoSaware 

 Section 8 presents the components related to the AV simulator provided by Robotec and the interface 
developed for their interaction 

 This deliverable concludes in Section 9 
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1 Introduction  

CPSs are designed using a model-based design approach, thus accurate modelling and simulation plays an 
important role in the design outcome. This approach is similar for CPSoS although we must consider the 
fact that CPSoS have a continuous evolution that involve the continuous addition, removal, and 
modification of hardware and software CPS components over the CPSoS complete life cycle. This poses a 
considerable CPSoS challenge since the CPSoS design phase and operation phase are not separated but 
rather coexist through time thus forming a design operation continuum that must be supported. This 
continuum leads to a need for System-wide dynamic reconfigurability and adaptability of CPS resources 
and CPS process lifecycles. The CPSoS must include a mechanism able to reconfigure its CPS components 
according to its evolving physical and cyber environment, possibly commission new components or 
decommission/replace old ones. However, the complexity and autonomy of the CPSoS makes it very hard 
to identify when a reconfiguration is needed, thus highlighting the need for introducing CPSoS self-
awareness through a CPSoS cognitive mechanism. The cognitive CPSoS must be able to provide situational 
awareness in a decentralized manner (matching the decentralized way CPS operate within the system) and 
aid both CPSoS operators and users in order to reduce the complexity management burden. CPSoSaware 
architecture as already presented thoroughly in the respective deliverable ( [2], ), delivers these 
requirements through the tight integration of various components that operates in the CPSoS System Layer 
and CPS/CPHS Layer.  

Deliverable D5.2 is the preliminary version of a series of 2 deliverables that describe the integration 
activities performed in T5.2. T5.2 focuses on the integrations and cross level optimizations for CPSoS 
Maintenance and CPSoS lifecycle design operation continuum. In this task, the various CPSoSaware blocks 
that provide support for the CPSoS Design Operation Continuum are integrated and evaluated. This action 
performs integration of the MRE, the CSAIE, the SRMM and the SAT blocks of the CPSoSaware System 
Layer with the CP(H)S Layer commissioning, security components, the definitions of the data structures to 
be exchanged between the CPSoSaware System Layer and the CP(H)S layer and the actual generation of 
test vectors to be used for the validation of the Design Operation Continuum support mechanism. In this 
task, the evaluation process that is going to be conducted on the tow use cases in WP6 will be used as 
feedback in order to provide optimization to the cross – layer integrated components. The evaluation 
process is meant to highlight possible Requirements KPI misalignments due to integration of the various 
CPSoSaware blocks and components and provide possible solutions to mitigate the risk. The cross-layer 
communication will be optimized in order to support the Requirement KPIs, thus focusing on providing 
fast response time and small communication latency. The evaluation process will also be extended to the 
level of provided security in the Design Operation Continuum Support Mechanism. The task is associated 
with all WP5 and WP4 tasks and the evaluation process of WP6. 

This deliverable presents a subset of the CPSoSaware components where integration with respect to other 
components and use cases have been already designed and implemented. This subset comprises of: 

 Scene analysis and understanding components 

 Localization components 

 Security runtime monitoring & management components 

 Hardware acceleration components 
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 Intra communication communication 

 AV simulation components 

The rest of the components and the holistic integrated CPSoSaware workflow will be reported in the next 
and final version of this deliverable (D5.4 Final Version of CPSoSaware Integrated Platform). 
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2 Architecture 

CPSoSaware system, as of the latest version of the system architecture, consists of 3 main layers. 1)CPSoS 
System Layer, 2) CPS/CPHS Layer, 3) Simulation and Training Layer (Figure 1). The distribution of the 
technical components these layers is presented from Figure 2 to Figure 4. T5.2 is strongly related to T1.3 
where the dependencies, interactions and finally interfaces of the various components have been detected. 
These interactions are depicted in Figure 5. More insights and details on the description/specifications of 
the system architecture and components is given in “D1.4: Second Version of CPSoSaware System 
Architecture” from which these figures where excerpted [3]. 

 

Figure 1 CPSoSaware Layers 

Moreover, the outcome of these integration activities as performed in T5.2 and reported in the 2 respective 
deliverables will be realized in WP6 for the execution of the pilots. During the initial phases of the 
CPSoSaware project, two use cases have been defined and described in detail. In this definition phase, the 
use cases are outlined, and the main components have been identified. These developments are to be 
integrated on the two pilot demonstrators and tested/validated in specific testing scenarios as reported in 
[3].  

 



Preliminary Version of CPSoSaware integrated platform 

 

 

14 

 

 

Figure 2 CPSoS layer and sub-blocks 

 



Preliminary Version of CPSoSaware integrated platform 

 

 

15 

 

 

Figure 3 CPS/CPHS layer and sub-blocks 

 

Figure 4 Simulation and Training layer and sub-blocks 
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Figure 5 Overview of system interfaces 
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3 Integration & Deployment Framework 

To facilitate a more formal and automated way to perform integration testing and deployment, CPSoSaware 
adopted the use of Continuous Integration / Continuous Deployment automation servers. In CPSoSaware, 
automations on integration testing where these are applicable, are based on Jenkins [4], an open source & 
free software that implements an automation server. It helps automate the parts of software development 
related to building, testing, and deploying, facilitating continuous integration and continuous deployment. 
It is a server-based system that runs in servlet containers such as Apache Tomcat and it supports several 
version control tools (e.g. CVS [5], Subversion [6], Git [7], Mercurial [8], etc.) and can execute various build 
tools commands as well as arbitrary shell scripts and Windows batch commands. 

 

Figure 6: CPSoSaware CI/CD workflow 

The workflow proposed in the CPSoSaware project is presented in Figure 6. This workflow is designed 
based on Jenkins Pipelines [9] and there will be configured with a source code management (SCM) polling 
trigger.  

The SCM system adopted by the CPSoSaware is Git. Git is a distributed version-control system for tracking 
changes in any set of files, originally designed for coordinating work among programmers cooperating on 
source code during software development. Its design goals include speed, data integrity, and support for 
distributed, non-linear workflows (thousands of parallel branches running on different systems). 

Jenkins Pipeline is a suite of plugins which supports implementing and integrating continuous delivery 
pipelines into Jenkins. A continuous delivery (CD) pipeline is an automated expression of your process for 
getting software from version control right through to the users. Every change to the software (committed 
in source control) goes through a complex process on its way to being released. This process involves 
building the software in a reliable and repeatable manner, as well as progressing the built software (called 
a "build") through multiple stages of testing and deployment. Pipeline provides an extensible set of tools 
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for modeling simple-to-complex delivery pipelines "as code" via the Pipeline domain-specific language 
(DSL) syntax. The definition of a Jenkins Pipeline is written into a text file (called a Jenkinsfile) which in 
turn can be committed to a project’s source control repository. This is the foundation of "Pipeline-as-code"; 
treating the CD pipeline a part of the application to be versioned and reviewed like any other code. 

As already imposed, all the involved components in the CPSoSaware platform will be version controlled 
and stored in Git Repositories. These components will be: 

 Functional/non-Functional requirements 

 Simulation suite code 

 Components configurations (raspberry, FPGA, etc.) 

 Components codes: 

• Bitstreams codes 

• Service codes  

• Scripts 

 Test automation scripts: The testing scripts will verify that the configurations are applied/deployed 
successfully in the components and there is communication between them. 

Also, a binary repository manager (also known as artifactory) will be configured to store 3rd party libraries 
and/or the outcome of the build process. This repository will store binaries such as: 

 Customized OS images 

 FPGA bitstreams 

 Simulation suite binaries   

It must be noted, CPSoSaware components present a heterogeneity that does not allow in the context of the 
project, to configure pipelines where end – to – end workflows will be able to be automated through the 
CI/CD automation server. However, individual integration paths have been already tested through Jenkins 
pipelines while automated deployment/commissioning tasks are to be executed by Jenkins delivering the 
required functionality of the TC4.61 as described in D1.4 [2]. The details of the automation server 
maintained from UOP along with the storage and transformation (SAT) engine developed from IBM that 
is used for persisting configuration data and evaluation results, are detailed in more details in D4.4 [10]. 
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4 Scene Analysis & Localization Components 

In the following chapters we provide a short description of the algorithms examined and the solutions 
developed by ISI. More specifically in Chapter 4.1 we present scene analysis algorithms and in Chapter 4.2 
localization algorithms. In Chapter 4.4 we present how we integrated these solutions in the Carla ROS 
framework, and we provide the relevant repository links and technical instructions. Moreover, in the same 
chapter we present the integration of the Carla Artery simulator to ROS framework, something which gives 
us the ability to simulate more realistically the V2X communications. In addition, in the same chapter we 
present the integration of the visual odometry algorithms to a real vehicle. In Chapter 4.5 we give a 
description of the framework and the REST API developed for publishing the framework’s resources. The 
metrics used for the quantitative evaluation of the presented solutions are described in Chapter 4.6. Finally, 
in Chapter 4.7 we present the integrated demo setup and the workflows that we’re going to implement.  

4.1 Scene analysis understanding accelerated modules 

In the following chapter we present a short description of the scene analysis algorithms that have been 
tested. You can find more information about the algorithms in Deliverable 3.1 [11]. The following solutions 
and the relevant integrations described implement components TC3.1.2R1 - TC3.1.2R3.  
The version of multimodal 2D and 3D scene analysis with acceleration which can be executed in a PC or 
an embedded system (Jetson) can be found in the following links: 

 https://gitlab.com/isi_athena_rc/cpsosaware/multimodal-scene-understanding/multimodal-fusion-
tools 

 https://gitlab.com/isi_athena_rc/cpsosaware/multimodal-scene-understanding/multimodal-fusion-
tools/-/tree/jetson 

4.1.1 2D image-based scene analysis 

We integrated and evaluated the performance of the VQ and DL weight sharing techniques on the two fully 
convolutional object detection networks, namely, SqueezeDet and ResNetDet, presented in [12]. Both 
networks utilize a feature-extraction part that translates the input image into a high-dimensional feature 
map, followed by ConvDet, namely a convolutiona detection layer with the purpose of locating object-
containing bounding boxes, predict the class of each object, and produce a confindence score for each 
detection. Where the two networks differ primarily is the in feature-extraction part, with SqueezeDet 
utilizing SqueezeNet [13] as a backbone network while ResNetDet being based on ResNet50 [14]. 

4.1.1.1 Accelerated models 

We apply the detection models in a "full-model" acceleration scenario. It involves accelerating multiple (or 
all) convolutional layers of the original models and measuring the achieved performance of the accelerated 
networks. 

It is noted, here, that, although full-range acceleration depends heavily on the performance of the technique 
used for the acceleration of each layer, it also involves experimentation over the strategy used for 
accelerating the layers and the involved fine-tuning (re-training) of the accelerated model. Here, we follow 
a stage-wise acceleration approach [15] with each stage involving the acceleration (and fixing) of one or 

https://gitlab.com/isi_athena_rc/cpsosaware/multimodal-scene-understanding/multimodal-fusion-tools
https://gitlab.com/isi_athena_rc/cpsosaware/multimodal-scene-understanding/multimodal-fusion-tools
https://gitlab.com/isi_athena_rc/cpsosaware/multimodal-scene-understanding/multimodal-fusion-tools/-/tree/jetson
https://gitlab.com/isi_athena_rc/cpsosaware/multimodal-scene-understanding/multimodal-fusion-tools/-/tree/jetson
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more layers of the network, and, subsequently, fine-tuning (i.e., re-training) the remaining original layers. 
The starting point for each stage is the accelerated and fine-tuned version of the previous stage. The process 
begins with the original network and it is repeated until all target layers are accelerated. For fine-tuning and 
performance assessment, we use the training and validation datasets from KITTI, as previously explained. 

Integrating the accelerated version corresponds to the utilization of weights that have been accordingly 
processed with the proposed in D3.1 [11] weight sharing approaches.  

4.1.2 3D point cloud based scene analysis and understanding  

Here, the two object detection schemes that will be considered, namely, PointPillars and PV-RCNN, are 
briefly presented. The PointPillars network [13] introduces the notion of a Pillar. Based on those Pillars, 
this network removes the need for 3D convolutions, which have been central to networks like VoxelNet 
[16] and Second [17], by utilizing strictly 2D convolutions, thus, achieving both high precision and fast 
inference. 

4.1.2.1 Accelerated models 

In our experiments, we apply the VQ and DL weight-sharing techniques to the PontPillars and PV-RCNN 
models, targeting their convolutional layers, and measuring the performance drop induced by the 
acceleration, compared to the original networks. The reported acceleration ratios are defined as the ratio of 
the original to the accelerated computational complexities, measured by the number of multiply-accumulate 
(MAC) operations. 

PointPillars is a fully convolutional network with its feature-extraction part (both 2D and transposed 
convolution operators) being responsible for 97.7%  of the total MAC operations required. In total 
Pointpillars network encompasses 4.835 × 106 parameters and require 63.835 × 109 MACs. For a good 
balance between acceleration and performance drop, we targeted the 2D convolutional layers of PointPillars 
(consuming approximately 47% of the total MACs), as well as the 4 × 4 transposed convolutional layer of 
the network (responsible for 44.4%  of the total MACs), depicted with the red blocks in Fig. 2.3(a). 
Acceleration was performed in 16 acceleration stages with each stage involving the quantization of a 
particular layer, followed by fine-tuning. Using acceleration ratios of 𝛼𝛼  = 10 , 20 , 30 , and 40  on the 
targeted layers, lead to a reduction of the total required MACs by 82% , 86% , 88% , and 89% , or 
equivalently, to total model acceleration of PointPillars by 5.6 ×, 7.6 ×, 8.6 ×, and 9.2 ×, respectively. 

The main bulk of the operations required by PV-RCNN are consumed by the Voxel-Backbone and the 
BEV-Backbone blocks shown in Fig. 2.3(b), with the former one being composed of Submanifold Sparse 
3D-Conv layers [18], while the latter consisting of regular 2D convolutional layers. Since the Sparse 
convolutional layers are already specialized layers that are designed to exploit the sparsity of the input to 
reduce their computational complexity, and keeping in mind that the number of operations required by such 
layers is input-dependent, in this experiment we focused only on the BEV-Backbone block of PV-RCNN, 
as shown in Fig. 2.3(b).  PV-RCNN network encompasses 12.405 × 106  parameters and requires 
88.878 × 109 MACs without taking into account the sparse convolutional layers. 

In this case, the targeted layers (highlighted in Fig. 2.3(b)) are responsible for roughly 86% of the MACs 
required by the BEV-Backbone block. Similarly to the previous experiment, using acceleration ratios of 𝛼𝛼 
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= 10, 20, 30, and 40 on the targeted layers, lead to a reduction of the MACs required by the BEV-
Backbone block by 77%, 82%, 83%, and 84%, or equivalently, to the block's acceleration by 4.5 ×, 5.5 ×, 
6.0 ×, and 6.3 ×, respectively 

 

Likewise , Integrating the accelerated version corresponds to the utilization of weights that have been 
accordingly processed with the proposed in D3.1 [11] weight sharing approaches.  

4.1.3 Multimodal fusion 

A late fusion strategy takes place combining 2D driven detections and 3D driven detections.  Initially, 3D 
bounding boxes are projected upon the 2D plane and converted to 2D bounding boxes. To fuse 2D and 3D 
measurements a non-maximal suppression [19] driven approach takes place redefining the bounding boxes 
on the 2D space. Afterwards, to define vehicle range measurements 2D projects are matched to 3D points 
of the point cloud. Subsequently, each 3D point of the point cloud [xi, yi, zi] is projected upon the 3D image.  

The 3D bounding box is described by its center 𝑇𝑇 = [𝑡𝑡𝑥𝑥 , 𝑡𝑡𝑦𝑦, 𝑡𝑡𝑧𝑧]𝑇𝑇 , dimensions 𝐷𝐷 = [𝑑𝑑𝑥𝑥 ,𝑑𝑑𝑦𝑦,𝑑𝑑𝑧𝑧] , and 
orientation 𝑅𝑅(𝜃𝜃,𝜙𝜙,𝛼𝛼) where 𝜃𝜃 is the azimuth, 𝜙𝜙 is the elevation and 𝛼𝛼  is the roll angles. Given the pose of 
the object in the camera coordinate frame (𝑅𝑅,𝑇𝑇) ∈ 𝑆𝑆𝑆𝑆(3) and the camera intrinsics matrix 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

(0) , the 
transformation matrix 𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

(𝑖𝑖)  the projection of a 3D point 𝑋𝑋𝑜𝑜 = [𝑋𝑋,𝑌𝑌,𝑍𝑍, 1]𝑇𝑇 in the object's coordinate frame 
into the image 𝑥𝑥 = [𝑥𝑥,𝑦𝑦, 1]𝑇𝑇 is:  

𝑥𝑥 =   𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
(𝑖𝑖) ∗  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

(0)  ∗  𝑋𝑋 

Detection networks assign an objectness score to each anchor-box. For an image of size 𝑊𝑊 × 𝐻𝐻 pixels, a 
total of 𝑊𝑊

𝑆𝑆
× 𝐻𝐻

𝑆𝑆
 anchor-placement locations are obtained, where S is the stride of the CNN. Given an anchor-

template set 𝒯𝒯 = {𝑇𝑇1,𝑇𝑇2, . . .𝑇𝑇𝑘𝑘 . . .𝑇𝑇𝐾𝐾} , corresponding to different scales and aspect-ratios, a total of 
𝐾𝐾 × 𝑊𝑊

𝑆𝑆
× 𝐻𝐻

𝑆𝑆
 anchor-boxes, 𝒜𝒜, are placed over the image. Every element in 𝒜𝒜 is assigned an objectness score. 

Therefore, for a 1024 × 1024 pixels image, a CNN of stride 16 and 15 anchors per location, generates a 
total of 61,440 proposals forming the set 𝒮𝒮. NMS is applied to remove spatially redundant proposals that 
are very close to each others while ensuring high recall for all the objects in the image with a limited 
candidate set. 

The popular NMS algorithm is sequential in nature. At each iteration 𝑖𝑖, it selects the top scoring proposal 
𝑃𝑃(𝑖𝑖) from the set 𝒮𝒮 and removes all proposals in 𝒮𝒮 − 𝑃𝑃(𝑖𝑖) which have an overlap 𝑜𝑜 greater than a threshold 
𝑡𝑡. The complexity of each iteration is linear in the size of set 𝒮𝒮.  
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Figure 7 Non maximum suppression algorithm. 

 

4.2 Odometers  

In the following chapter we present a short description of the odometry algorithms that have been tested. 
You can find more information about the algorithms in Deliverable 3.1 [11]. The following solutions and 
the relevant integrations described implement components TC3.1.1 and TC3.1.2. 

4.2.1 DSO 

Direct Sparse Odometry is a Visual odometry method which exploits a probabilistic model by minimizing 
photometric error with consistent, joint optimization of all model parameters, including geometry-
represented as inverse depth in a reference frame-and camera motion. Due to the direct formulation of DSO, 
it directly uses the actual sensor values-light received from a certain direction over a certain time period-as 
measurements Y in the probabilistic model. Additionally, one of the main benefits of a direct formulation 
is that it does not require a point to be recognizable by itself, thereby allowing for a more finely grained 
geometry representation (pixelwise inverse depth). Furthermore, data from across the image can be 
sampled—including edges and weak intensity variations generating a more complete model and lending 
more robustness in sparsely textured environments. A sparse framework (these methods use and reconstruct 
only a selected set of independent points, traditionally corners) has been chosen during the optimization 
since the main drawback of adding a geometry prior, as dense methods do, is the introduction of correlations 
between geometry parameters, which render a statistically consistent, joint optimization in real time 
infeasible. Optimization is performed in a sliding window, exploiting Gauss-Newton algorithm, where old 
camera poses as well as points that leave the field of view of the camera are marginalized. In contrast to 
existing approaches, this method further takes full advantage of photometric camera calibration, including 
lens attenuation, gamma correction, and known exposure times. This integrated photometric calibration 
further increases accuracy and robustness. DSO, apart from a geometric camera model which comprises 
the function that projects a 3D point onto the 2D image, considers also a photometric camera model, which 
comprises the function that maps real-world energy received by a pixel on the sensor (irradiance) to the 
respective intensity value. 
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The version of DSO which can be executed in a PC or an embedded system (Jetson) can be found in the 
following link: 

https://gitlab.com/isi_athena_rc/cpsosaware/odometers/dso 

4.2.2 LeGO Loam 

Lightweight and Ground-Optimized LOAM (LeGO-LOAM) is a LO solution for pose estimation in 
complex environments with variable terrain. LeGO-LOAM is lightweight, as real-time pose estimation and 
mapping can be achieved on an embedded system. Point cloud segmentation is performed to discard points 
that may represent unreliable features after ground separation. LeGO-LOAM is also ground-optimized, as 
a two-step optimization for pose estimation is introduced. Planar features extracted from the ground are 
used to obtain z translation, roll and pitch during the first step. In the second step, the rest of the 
transformation (x,y translation and yaw) is obtained by matching edge features extracted from the 
segmented point cloud. The overall system is divided into five modules. The first, segmentation, takes a 
single scan’s point cloud and projects it onto a range image for segmentation. The segmented point cloud 
is then sent to the feature extraction module, which determines two types of features: edge and planar. Then, 
LIDAR Odometry uses features extracted from the previous module to find the transformation relating 
consecutive scans using the two-step Levenberg-Marquardt optimization. The features are further processed 
in LIDAR mapping, which registers them to a global point cloud map. At last, the transform integration 
module fuses the pose estimation results from lidar odometry and LIDAR mapping and outputs the final 
pose estimate. The proposed system seeks improved efficiency and accuracy for ground vehicles, with 
respect to the original, generalized LOAM framework. 

LeGO Loam can be found in the following link. 

https://gitlab.com/isi_athena_rc/cpsosaware/odometers/lego_loam_ros  

4.2.3 ORB SLAM 2 

ORB-SLAM 2, is one of the most popular open-source feature-based monocular SLAM systems that can 
be executed in real time. It outputs an estimated camera trajectory and a sparse point cloud reconstruction 
of the environment. The system is robust to severe motion clutter, allows wide baseline loop closing and 
relocalization, and includes fully automatic initialization. ORB SLAM 2 executes in parallel three distinct 
processes which implement the following tasks: Tracking, Local Mapping and Loop Closing.  

https://github.com/raulmur/ORB_SLAM2 

4.2.4 Multi-modal relocalization 

In terms of the odometry robustification and assessment in a variety of testing scenarios for the purposes of 
T3.6 and T4.5, we have derived the proposed system architecture diagram of Figure 8, through the 
combination of a Visual and LIDAR based SLAM solution: 

https://gitlab.com/isi_athena_rc/cpsosaware/odometers/lego_loam_ros
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Figure 8 Proposed multi-modal fusion architecture 

Its core idea is to couple the extracted pose from Visual (LIDAR based) approach with the landmarks 
detected by the LIDAR based (Visual) solution. 

4.3 Cooperative Localization  

For the Cooperative Localization, Tracking and Awareness of T3.3, we have assumed that vehicles in an 
urban environment through V2V communication exchange their measurements so as to estimate more 
accurately their positions. For that purpose, a graph based approach has been utilised, which couples 
together the vehicles’ connectivity through the graph Laplacian operator, with the multi-modal inter-
vehicular measurements. Two general methodologies have been developed: (i) information diffusion based, 
in which neighbouring vehicles broadcast and receive in an iterative manner the estimated location vectors, 
(ii) Kalman Filter based, where the state vector that needs to be tracked contains the self and neighbouring 
vehicles’ positions. The latter approach is able to address the dynamic nature of connectivity topologies 
highly efficiently. In both cases, the key step of extracting the range measurements (relative distance and 
angle) towards other vehicles has been skipped. Our goal is to explicitly integrate the previously discussed 
object detectors in the specific framework of Cooperative Awareness, so as to employ realistic traffic data.  

Another limitation of the developed methodology is related to the apparent network delays in vehicular 
applications. Since vehicles frequently exchange measurements and estimations, it is expected that the delay 
introduced by V2V communication impacts on the performance of Cooperative Awareness. However, we 
have realistically simulated the effect of delays in our framework, so as to initially evaluate their footprints. 
Each vehicle broadcasts CAM messages at least every 100 ms, while the maximum delay introduced by 
V2V communication can reach 300 ms at heavy traffic density of 0.1 vehicles/meter. Therefore, for every 
iteration round of the proposed diffusion-based algorithm we have at most 400 ms delay, which implies 
that vehicle i receives the location vector of its neighbors estimated 4 iterations before. Integrating a 
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network and communications simulator in the environment of CARLA, alongside the object detectors will 
be another major goal of ours.  

4.4 Levels of integration 

In this chapter we present the different levels of integration regarding the components that implement the 
algorithms described in the previous chapters. In the first level the components are integrated in the Carla-
ROS simulation framework, in the second level we have the addition of V2X communication due to the 
integration of Carla Artery simulator to ROS framework, and finally, in the third level we have the 
deployment of the components in a real vehicle provided by Panasonic. 

4.4.1 CARLA ROS 

The integration to the Carla-ROS framework is the development of the appropriate ROS nodes that will 
implement a specific algorithmic behavior. These nodes either contain all the resources necessary for 
executing the algorithm or the call an appropriate library. 

Every ROS node consumes and published data in the context of the ROS framework, under ROS topics. 
The type of these messages is either predefined by the ROS framework or custom types can be created and 
used. The synchronization of all the nodes is provided by the ROS framework. Concerning the 
programming languages, the nodes are either implemented in Python or in C++. 

All the nodes consume data generated in the Carla simulation environment. The data can be either generated 
asynchronously (rosbags) or synchronously. In the latter case, the user of the carla-ros-bridge is necessary 
for the establishment of the bi-directional communication between Carla and the ROS framework. 

4.4.1.1 DSO 

The DSO ROS node is a ROS wrapper of DSO. It subscribes to a topic under which the rgb image data are 
published, it sends the data to DSO, it gets back the estimated pose and the DSO points, and it published 
them under the relevant topics. 

Requirements 

 DSO installed 

 Pangolin 

 OpenCV 

Installation and execution 

1. Install DSO 
2. Download the repository in a catkin workspace 

git clone https://gitlab.com/isi_athena_rc/cpsosaware/odometers/dso_ros.git 
3. Build: 

 export DSO_PATH=[PATH_TO_DSO]/dso 
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 catkin_make  
4. Run 

rosrun ros_dso ros_dso ros_dso_node image:= /ego_vehicle/rgb_fron/image calib=<path to camera 
calibration file> 

Calibration File 

The calibration file is used to define the intrinsic parameters of the camera sensor. In the case of Carla we 
deploy a camera based on the pinhole model and the relative calibration file is based on the following 
template. 

Pinhole fx fy cx cy  

in_width in_height 

"crop" / "full" / "none" / "fx fy cx cy 0" 

out_width out_height 

The parameters fx, fy, cx, and cy denote fx fy cx cy denote the focal length and the principal point relative to the image width and 
height 

ROS Topics 

Topic Type Description Message Type 

/carla/ego_vehi-
cle/rgb_front/image 

Input RGB input sensor_msg::Image 

/carla/ego_vehicle/state Input The state of the ego vehi-
cle (Calibration, Running, 
Finished) 

std_msgs::String 

/dso/pose Output The estimated pose in 
reference to dso/odo 

geometry_msgs::Pos-
eStamped 

/dso/pose_map Output The estimated pose in 
reference to map 

geometry_msgs::Pos-
eStamped 

/dso/intitial_pose Output The pose at dso/odo geometry_msgs::Pos-
eStamped 

/dso/path Output The path of ego_vehicle nav_msgs::Path 
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/dso/pointCloud Output The mapped points sensor_msgs::Point-
Cloud2 

/dso/error Output ATE error std_msgs::Float32 

Transforms 

Transform Type Description 

carla/ego_vehicle/rgb Input Transform for calculating the ATE 
error 

dso/odo Output Initial transform at frame 0 

dso/cam Output Estimated pose 

4.4.1.2 ORB SLAM2 

ORB SLAM 2 executes in parallel three different processes and more specifically Tracking, Local Mapping 
and Loop Closing.  

Requirements 

Eigen3 

ROS Topics 

Topic Type Description Message Type 

/carla/ego_vehicle/rgb_front/image Input RGB input sensor_msg::Image 

/carla/ego_vehicle/rgb_front/cam-
era_info 

Input RGB sensor in-
formation for 
calibrating the 
camera 

sensor_msgs::CameraInfo 

/dso/pose Output The estimated 
pose in refer-
ence to the 
odometry 

origin 

geometry_msgs::PoseStamped 
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/orb/path Output The path of 
ego_vehicle 

nav_msgs::Path 

/orb/map_points Output The mapped 
points 

sensor_msgs::PointCloud2 

Transforms 

Transform Type Description 

carla/ego_vehicle/rgb Input Transform for calculating the ATE 
error 

orb/odo Output Initial transform at frame 0 

orb/pose Output Estimated pose 

4.4.1.3 LeGO-LOAM 

In contrast to DSO and similarly to ORB SLAM2 all the functionalities of LeGO-LOAM are implemented 
in the context of ROS framework.  

Requirements 

Georgia Tech Smoothing and Mapping library (gtsam) 4.0.0-alpha2. Execute the following procedure to 
install the library. 

wget -O ~/Downloads/gtsam.zip \ https://github.com/borglab/gtsam/archive/4.0.0-alpha2.zip 

 

cd ~/Downloads/ && unzip gtsam.zip -d ~/Downloads/ 

cd ~/Downloads/gtsam-4.0.0-alpha2/ 

 

mkdir build && cd build 

cmake .. 

sudo make install 

Installation and execution 

cd ~/catkin_ws/src 

https://github.com/borglab/gtsam/archive/4.0.0-alpha2.zip
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git clone \ https://gitlab.com/isi_athena_rc/cpsosaware/odometers/lego_loam_ros 

cd .. 

catkin_make -j1 

If the code is built correctly, you can run the application. 

roslaunch lego_loam run.launch 

ROS Topics 

Topic Type Description Message Type 

carla/ego_vehicle/lidar Input Ego vehicle’s lidar 
(16 or 64 channels) 

sensor_msg::PointCloud2 

carla/ego_vehicle/state Input The state of the ego 
vehicle (Calibration, 
Running, Finished) 

std_msgs::String 

/segmented_cloud Output The estimated pose in 
reference to dso/odo 

sensor_msgs::PointCloud2 

/laser_cloud_sharp Output Sharp features sensor_msgs::PointCloud2 

/laser_cloud_less_sharp Output Less sharp features sensor_msgs::PointCloud2 

/laser_cloud_flat Output Flat  features sensor_msgs::PointCloud2 

/laser_cloud_less_flat Output Less flat features sensor_msgs::PointCloud2 

/laser_odom_to_init Output Estimated poses sensor_msgs::PointCloud2 

/ground_cloud Output The ground plane of 
the point cloud 

sensor_msgs::PointCloud2 

Transforms 

Transform Type Description 
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map Input World frame 

camera_init Output Odometry coordination frame 

camera Output Estimated pose frame 

 

Figure 9 Screenshot of real-time ΑΤΕ and RPE error estimation during simultaneous execution of DSO and 
LeGO LOAM 

4.4.1.4 2D object detection 

The following ROS node uses a pretrained YOLO3 CNN for the detection of objects in images. 

Requirements 

 OpenCV 

 boost 

Installation and execution 

Navigate to the src folder of your catkin workspace and clone the repository. 

git clone git@gitlab.com:isi_athena_rc/cpsosaware/multimodal-scene-understanding/2d-image-
based/darknet_ros.git 

Build the workspace 

cd .. 

catkin_make -DCMAKE_BUILD_TYPE=Release 
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Start the ROS node 

roslaunch darknet_ros darknet_ros.launch 

ROS Topics 

Topic Type Description Message Type 

/carla/ego_vehicle/rgb_front/image Input RGB input sensor_msg::Image 

/object_detector Output Number of de-
tected objects 

std_msgs::Int8 

/bounding_boxes Output A custom mes-
sage that gives 
information 
about the posi-
tion and the 
size of the 
bounding 
boxes in pixel 
coordinates 

darknet_ros_msgs::Bounding-
Boxes 

/detection_image Output The image in-
cluding the 
bounding 
boxes 

sensor_msgs::Image 

The darknet_ros_msgs::BoundingBoxes is a special type of message which except from a header contains 
an area of the class darknet_ros_msgs::BoundingBox. The message darknet_ros_msgs:: BoundingBox 
encapsulates the following fields: 

float64 probability 

int64 xmin 

int64 ymin 

int64 xmax 

int64 ymax 

int16 id 

string Class 
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Figure 10 Screenshot of Darknet detecting objects on images from Carla 

4.4.1.5 3D object detection 

The 3D object detection ROS node used OpenPCDet for the detection of the objects inside the lidar point 
cloud. It is actuall a ROS wrapper that calls loads the weights of the accelareted models described in the 
previous chapter. 

Requirents 

The ROS node has the same dependencies with OpenPCDet except from the ROS framework 

Installation and execution 

Navigate to the src file of your catkin workspace and download the repo 

cd ~/catkin_ws/src 

git clone git@gitlab.com:isi_athena_rc/cpsosaware/multimodal-scene-understanding/openpcdet-ros.git 

Build the workspace 

cd .. 

catkin_make -DCMAKE_BUILD_TYPE=Release 

Start the ROS node 

roslaunch openpcdet 3d_object_detector.launch 
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Figure 11 Screenshot of rviz depicting the ego vehicle (green box), estimated 3d objects (blue boxes), ground 
truth (red boxes) and the point cloud.. 

Configuration 

Navigate inside the src/inference.py file of the repository and change the line that points to the model in 
line 414. In that way you can use a different model that will execute the inference. 

ROS Topics 

Topic Type Description Message Type 

carla/ego_vehicle/lidar Input Ego vehicle’s lidar (16 
or 64 channels) 

sensor_msg::PointCloud2 

OpenPCDet/perception/detec-
tion 

/3D_lidar_obstacles_markers 

Out-
put 

An Array of Markers for 
each 3D object detected 
in space 

visualization_msgs::MarkerAr-
ray.msg 

4.4.1.6 Cooperative localization 

The Cooperative localization ROS Node implements the algorithm of cooperative localization as described 
in the previous relevant chapter. The repo contains a rosbag file for testing purposes. 

Requirements 

 numpy 

 scipy 
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Installation and execution 

Navigate to the src file of your catkin workspace and download the repo 

cd ~/catkin_ws/src 

git clone https://gitlab.com/isi_athena_rc/cpsosaware/cooperative-localization-and-tracking/ros_ekf 

Build the workspace 

cd .. 

catkin_make -DCMAKE_BUILD_TYPE=Release 

Start a ROS core  

roscore  

Start the cooperative localization node  

rosrun extended_kalman node.py  

Provide data by either utilizing the rosbag provided  

rosbag play ~/ros-workspace/ros_ekf/rosbags/10m.bag  

or by using Carla and carla ros-bridge. 
ROS topics 

Topic Type Description Message Type 

ekf/neighbors Input Information about the 
neighboring behicles 

NeighborList 

edk/pose Out-
put 

The pose of the ego ve-
hicle 

geometry_msgs::PoseStamped 

ekf/path Out-
put 

An array of poses of the 
ego vehicle 

nav_msgs::Path 

The NeighborList type of message is custom type of message which contains an array of messages of the 
custom type NeighborInfo, which contains the following fields. 

uint32 id 

float32 x 
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float32 y  

float32 ate_error 

float32 gps_error 

This type of message is replaced with messages of type ros-etsi-its-messages which follows the official 
ETSI ITS Cooperative Awareness Message standard. In the following chapter we describe in more detail 
the integration of the Carla Artery simulator to the ROS framework something which gives us the ability 
to integrate V2X CAM messages in our scenarios. 

4.4.1.7 Logger 

The Logger is an auxiliary ROS node that executes the following operations: 

 It gathers data by subscribing to ROS topics 

 It visualized data or metrics 

 It forwards the data to other entities (storage service) 

 It stores data to csv files 

4.4.2 Carla ROS Artery Simulator 

The Carla ROS Artery integrated simulator refers to the combination and synchronization of the different 
clocks of the various sub-systems of the combined simulation framework. The framework combines three 
sub-systems, a network simulator, a traffic simulator and a game engine-based simulator, into a single 
platform. More specifically, CARLA is the component responsible for simulating physics phenomena and 
rendering. Artery V2X Simulation framework, which is built on top of OMNET++ framework, is for 
simulating network communications and more specifically V2X communications and SUMO for 
simulating complex traffic scenarios.  

CARLA interacts with ROS through the Carla-ROS Bridge. Since in synchronous mode, only one client 
can tick the CARLA server, the Bridge must be also launched in passive mode, for the timing of the ROS 
subsystem to follow the single system clock source, too. Finally, to in order to export to the ROS subsystem 
important application-level information, such as the ETSI ITS CAM or neighborhood from the 
Artery/OMNET++ network simulation, the ros-etsi-its-messages [20] encapsulation library can be used. 
For this, the artery CA service has been instrumented to provide an efficient dissemination of the current 
snapshot of the constructed neighborhood table related to each CARLA vehicle ID, as built from its own 
ITS CAM process, which is the ultimate abstraction needed at the ROS application code level. 
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Figure 12 Integrated Simulator's architecture 

4.4.3 Integration in PANA’s vehicle of odometry solutions 

The basic task of this module is to choose and fuse inputs from the odometry sources offered by our system 
in order to perform vehicle localization as robust as possible. 

4.4.3.1 Integration of GPS Information 

Since GPS is the only available input that allows for an absolute positional measurement, it seems natural 
that GPS information should be included in the odometry fusion. All other odometry solutions follow the 
dead reckoning principle, meaning that they have no means to recover from any inaccuracies in a past frame. 
However, the frame-to-frame accuracy of GPS is much lower than of the other means of collecting 
odometry information. Experiments indicate that this coarseness makes a direct integration of GPS 
information in real-time odometry very difficult if the excellent detail of the odometries should be retained. 
The first approach of using GPS information in odometry fusion thus is not a real-times one but one that 
alters that odometry of past frames as well. While this has serious drawbacks for application use, it shows 
that an integration of GPS is possible while retaining smooth trajectories (see 4.4.3.4). 

4.4.3.2 Dependencies 

During testing and development, the odometry fusion module certainly depends on all modules which create 
an odometry as their output. Once the work in this module has become mature enough, it may be possible 
to cancel some of these dependencies if the odometries are not needed as input. 

Apart from the common algorithm and math library, odometry fusion depends on the modules that 
provide: 

 Vehicle Odometry 
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 Visual Odometry 

 Dense Slam 

 Sparse Slam 

 GPS 

 

4.4.3.3 Third-Party Dependencies 

OpenCV is used only during debugging to store images etc. It is not part of the implementation of any of 
the algorithms. No other third-party libraries are being used. 

4.4.3.4 Description of the Architecture 

In order to find the best possible solution, odomfusion is being tested with several different algorithms. 

4.4.3.4.1 Real time Fusion with Kalman Filter 

Fusing of multimodal odometries 

The original implementation uses an Extended Kalman Filter to fuse visual and vehicle odometry. It has 
been updated to exhibit the same interface as the other estimators, but the algorithm remains unchanged. 
The inputs are hard-coded so there is no straight-forward way to extend this filter. 

Multi input Kalman 

A new estimator has been introduced which contains an extensible Kalman Filter and allows for any number 
of different inputs, which must be decided at compile time because of the fixed matrix sizes used in all 
computations. At the moment, the algorithm uses a simple linear Kalman Filter on the car position only but 
is easily extensible to accommodate nonlinear functions. Figure 13 shows a comparison between the 
original EKF implementation, which fuses vehicle and visual odometry, and the multi-input linear KF 
fusing odometries derived by multiple modalities. All base estimators yield quite differing results for the 
chosen test sequence, and it is visible that the addition of visual slam input improves the result, as the 
optimal result would be ending exactly where the track started. 
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Figure 13 (a) original EKF. (b) Linear EKF. Comparison of different fusion algorithms only a track where the 
base odometries yield differing results. White is the fused odometry, while the others are: red - vehicle, green - 

visual, pink – Visual SLAM 

4.4.3.5 Non-Real Time Fusion Using Nonlinear Optimization 

The first estimator to include GPS information uses nonlinear optimization over a window of past frames. 
In each frame, it computes the affine transformation that minimizes the distance to the GPS trajectory if 
applied to the trajectory points in a windowed fashion with its weight declining over time. 
4.4.3.6 Offline Parameter Optimization 

Since we have several combinations of filters as well as input configurations at our disposal (e.g: EKF with 
veh/gps/vis odometries, or LKF with veh/vis/gps/ Visual Dense Slam), a method for comparing these setups 
is needed. Furthermore, since all of these setups have a number of parameters which can possibly be used 
to improve fusion results, it is desirable to have a principled method of assessing the fusion quality provided 
by a set of parameters for each setup. Additionally, a method allowing to quantitatively compare the setups 
and parameter settings with each other would allow for an automatic approach to find the best combination 
of estimation setup and parameters. 

4.4.3.7 Viewing Odometry Fusion as an Optimization Problem 

With the possibility to obtain an error - or more precisely a residual vector when using multiple datasets, 
we have all ingredients to view the whole odometry fusion module as an optimization problem. A certain 
setup gives rise to certain parameters (e.g., variances and covariances for process and measurement noise 
in a Kalman Filter) for which a residual vector can be evaluated using the offline optimization tool. When 
changing the parameters, we can check if we can achieve a lower error by taking some norm of the residual 
vector. If we do this in a systematic fashion, we are mathematically optimizing over the parameters for the 
chosen odometry fusion setup. While traditional optimizers like Gauss-Newton have failed due to the 
complex error function and its potentially unreliable derivatives as calculated using _nite differences. 
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However, we can use a derivative-free optimization algorithm which is more robust against problematic 
error functions. However, these optimizers take many more evaluations of the error function in order to 
converge or find a region with low errors than those guided by derivatives. But in the case of optimizing 
the odometry fusion parameters, this is not a problem because  

The offline tool is implemented to allow extremely fast evaluation of the whole odometry fusion process to 
build up the residual vector for a certain set of parameters 

The process is not time-critical since it is part of the development for the odometry fusion module, and does 
not need at all to be used in the real-time system  

Figure 14 illustrates the potential of this optimization for two different datasets which both have the same 
start and end location. The input trajectories are shown in red (vehicle odometry), green (visual odometry), 
and pink (Visual Dense Slam). The setup for odometry fusion is an Extended Kalman Filter (EKF) which 
fuses the vehicle odometry and Visual Dense Slam inputs. The trajectory calculated by the fusion is shown 
in white. The left image in each row shows the fusion as computed by the initial (hand-picked) parameters 
that have been used so far, where the right image shows the trajectory as computed by the same fusion 
algorithm, using the optimized parameters. 
 

4.4.3.8 Integration of Optimized Parameters 

In order to make use of the optimized parameter settings and also to ease updating them in the future (e.g. 
if more datasets are available or new methods for calculating the quality arise), they have been placed in 
the config file for odometry fusion which has been introduced for this cause. The fusion algorithm itself 
can easily be changed. 

 
Figure 14 Comparison of EKF veh/Visual SLAM fusion results. The fused trajectory is shown in white, the other 
trajectories are: red - veh, green - vis, pink – Visual SLAM. (a) fusion with initial parameters, (b) with optimized 
parameter   
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4.5 Framework Integration 

4.5.1 Framework description 

The framework consists of components which produce data, consume data, or do both integrated in the 
ROS framework. The main producer is the Carla simulator which generates sensory data of various 
modalities. Carla-ROS bridge provides a bi-direction communication between Carla and the ROS 
ecosystem. In this ecosystem various algorithms have been implemented in the form of ROS nodes. These 
nodes subscribe to specific ROS topics, consume, and process the data, and finally generate an output. This 
output may be for example an estimated path or set of object detections. ROS framework is responsible for 
managing the communications and the lifecycle of the nodes. Finally, a REST API has been built for 
exposing the resources and providing remote access.  

4.5.2 REST API 

The goal of the REST API is to provide remote access to all the relevant resources of the framework. It is 
built using a Python Flask server, so it is meant to be deployed for development purposes. However, the 
switch to a production release does not requires much effort.  

The following part describes the most important methods of the REST API. For each method the url is 
constructed by Flask’s url plus the method’s unique identifier. The Flask server’s url is omitted in the 
examples. 

4.5.2.1 Get available applications 

Returns a list with all the available applications that can be executed remotely. 

Method: GET /apps 

Response: It returns a JSON array with the names (ids) of each available application. 

4.5.2.2 Start application 

It starts an application. 

Method: GET  /apps/<app_name>/start 

Parameters: If the application is ROS then as a parameter is given the name of the node. 

Arg Type Example Value 

node string ros_dso 

 
Response: If the operation is successful, it returns a 200 OK message. 
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4.5.2.3 Stop application 

It stops an application. 

Method: GET  /apps/<app_name>/stop 

Response: It returns a JSON array with the names (ids) of each available function. If the <app_name> id 
is not valid, it returns a 404 not found error code. 

4.5.2.4 Get application’s functions 

It returns a list of the available functions of a specific application. 

Method: GET  /apps/<app_name>/functions/ 

Response: It returns a JSON array with the names (ids) of each available function. If the <app_name> id 
is not valid, it returns a 404 not found error code. 

4.5.2.5 Run application’s function 

It executes a function of an application 

Method: POST /apps/<app_name>/<func_id> 

Response: If the operation is successful, it returns a 200 OK message. 

4.5.2.6 Execute a scenario in Carla 

It is special case of a function’s application. The user provides a custom scenario in OpenSCENARIO 
format which will be used for the execution of the simulation. 

Method: POST /apps/Carla/play_scenario 

Parameters: The .xosc file which describes the scenario to be implemented in Carla and the 
record_filename argument which defines whether the simulation scenario will be recorded for future use or 
not. 

Arg Type Example Value 

record_filename string “True” 

file file Scenario.xosc 

Response: If the operation is successful, it returns a 200 OK message. 
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4.6 Metrics  

Cooperative Localization: At time instant 𝑡𝑡  actual position of vehicle 𝑖𝑖 is equal to 𝑥𝑥𝑖𝑖 and estimated 𝑥𝑥𝚤𝚤� . 
Self-location error (LE) of 𝑖𝑖  is equal to 𝐿𝐿𝐸𝐸𝑖𝑖⟵𝑖𝑖 = ∥ 𝑥𝑥𝑖𝑖  − 𝑥𝑥𝚤𝚤� ∥. Location awareness error achieved by 𝑖𝑖  is 
equal to 𝐿𝐿𝐿𝐿𝐸𝐸𝑖𝑖  = � 1

|𝑁𝑁𝑖𝑖|
� �𝐿𝐿𝐿𝐿𝐸𝐸𝑗𝑗←𝑖𝑖�

2, for all vehicles 𝑗𝑗 belonging to the neighborhood of 𝑖𝑖 . Note 𝐿𝐿𝐿𝐿𝐸𝐸𝑗𝑗←𝑖𝑖 is 
the location error of 𝑗𝑗  as measured by 𝑖𝑖  using cooperative awareness solutions. The overall evaluation over 

simulation horizon T Is equal to 𝑂𝑂 − 𝐿𝐿𝐿𝐿𝐿𝐿 = �1
Τ
�   ∑ �𝐿𝐿𝐿𝐿𝐸𝐸𝑖𝑖

(𝑡𝑡)�
2

𝑇𝑇
𝑡𝑡=1 . 

Odometers:  

1. Absolute pose error (APE) is based on the absolute relative pose between two poses  
𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟,𝑡𝑡 ,  𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒,𝑡𝑡  ∈ 𝑆𝑆𝑆𝑆(3)  at timestamp 𝑡𝑡 : 𝐸𝐸𝑡𝑡  = 𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟,𝑡𝑡 

−1 𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒,𝑡𝑡 . Then, the translational and 
rotational APE will be equal to: 𝐴𝐴𝐴𝐴𝐸𝐸𝑡𝑡  =∥ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝐸𝐸𝑡𝑡) ∥ , where 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝐸𝐸𝑡𝑡)  is the 
translational part of 𝐸𝐸𝑡𝑡 and𝐴𝐴𝐴𝐴𝐸𝐸𝑡𝑡  =   ∥ 𝑟𝑟𝑟𝑟𝑟𝑟(𝐸𝐸𝑡𝑡)  − 𝐼𝐼3×3 ∥𝐹𝐹, where 𝑟𝑟𝑟𝑟𝑟𝑟(𝐸𝐸𝑡𝑡) is the rotational 
part of 𝐸𝐸𝑡𝑡. Root mean square error (RMSE) is used to calculate APE over all time stamps: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅  = ��1
𝑇𝑇
�∑ 𝐴𝐴𝐴𝐴𝐸𝐸𝑡𝑡2𝑇𝑇

𝑡𝑡=1 .  

2. Relative pose error (RPE) compares the relative poses along the estimated and the reference 
trajectory. This is based on the delta pose difference: 𝐸𝐸𝑡𝑡,𝑡𝑡+1 =
�𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟,𝑡𝑡

−1 𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟,𝑡𝑡+1�
−1
�𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒,𝑡𝑡

−1 𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒,𝑡𝑡+1�
−1
∈ 𝑆𝑆𝑆𝑆(3). Translational, rotational and RMSE RPEs 

are calculated in the same way as APEs did. 

2D Image-based scene analysis and understanding 

For each detection, the Intersection Over Union (IOU) score is computed as the ratio of area of intersection 
to the area of union between the predicted and ground-truth bounding boxes. A true positive occurs when 
IOU> 0.5 and the predicted class is the same as the ground-truth class. A false positive occurs when IOU<
0.5 or a different class is detected, meaning that unmatched bounding boxes are taken as false positives for 
a given class. 

3D point cloud-based scene analysis and understanding 

The official KITTI evaluation detection metrics include bird eye view (BEV), 3D, 2D, and average 
orientation similarity (AOS). The 2D detection is done in the image plane and average orientation similarity 
assesses the average orientation (measured in BEV) similarity for 2D detections[7]. The KITTI dataset is 
categorised into easy, moderate, and hard difficulties, and the official KITTI leaderboard is ranked by 
performance on moderate. For the sake of self-completeness, easy difficulty refers to a fully visible object 
with a minimum bounding height box of 40px and max truncation of 15%, moderate difficulty refers to a 
partially occluded object with a minimum bounding box height of 25px and max truncation of 30% and 
hard difficulty refers to a difficult to see an object with a minimum bounding box height of 40px and max 
truncation of 50%. Each 3D ground truth detection box is assigned to one out of three difficulty classes 
(easy, moderate, hard), and the used 40-point Interpolated Average Precision metric is separately computed 
on each difficulty class. It formulated the shape of the Precision/Recall curve as  
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 AP|𝑅𝑅 = 1
|𝑅𝑅|
∑𝑟𝑟∈𝑅𝑅 𝜌𝜌𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑟𝑟)  

 averaging the precision values provided by 𝜌𝜌𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑟𝑟), according to [21]. In our setting, we employ forty 
equally spaced recall levels,  

 𝑅𝑅40 = {1/40,2/40,3/40, … ,1}  

 The interpolation function is defined as  

 𝜌𝜌𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑟𝑟) = max
𝑟𝑟′:𝑟𝑟′≥𝑟𝑟

𝜌𝜌(𝑟𝑟′)  

 where 𝜌𝜌(𝑟𝑟) gives the precision at recall 𝑟𝑟, meaning that instead of averaging over the actually observed 
precision values per point 𝑟𝑟, the maximum precision at recall value greater or equal than 𝑟𝑟 is taken. 

4.7 Demo 

4.7.1 Setup 

The setup of the Carla ROS framework for the demo is the one described in the previous chapter. The 
resources are published via a REST API implemented by the Flask Server and the orchestration of the whole 
procedure is conducted by a Jenkins script. 

4.7.2 Workflow 

The process of utilizing the integrated simulation framework and running diverse automotive scenarios has 
been split into two parts which can be executed both serially and independently.  

The first part deals with the data generation and their encapsulation into rosbag format. Here the user creates 
or selects a specific scenario that runs in Carla. The data produced by the spawned sensors are collected 
and stored. The second part describes the evaluation of several integrated algorithms against specific 
metrics. These algorithms are described in the previous chapters and most of them are integrated in the 
Carla-ROS ecosystem. 

4.7.2.1 Creation of the rosbag 

The goal of this process is the creation of a rosbag. Rosbags are file formats for storing data in ROS 
framework. They are created by subscribing to a custom set of topics and storing the received data messages. 
The work flow of the procedure is depicted in the following figure (Figure 15). 
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Figure 15 Rosbag creation 

Initially, the user decides whether to create a new scenario or to select an existing one. The scenarios comply 
with the OpenSCENARIO format. The ASAM OpenSCENARIO [21] file format is used to describe the 
dynamic content of driving and traffic simulators. The primary use-case of OpenSCENARIO is to describe 
complex, synchronized maneuvers that involve multiple entities like vehicles, pedestrians, and other traffic 
participants. The description of a maneuver may be based on driver actions (e.g., performing a lane change) 
or on trajectories (e.g., derived from a recorded driving maneuver). Other content, such as the description 
of the ego vehicle, driver appearance, pedestrians, traffic, and environment conditions, is included in the 
standard as well. 
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Figure 16 Snippet of OpenSCENARIO file 

The traffic generator editor [22] is tool used for the creation of scenarios based on the OpenSCENARIO 
standard. It is based on the QGIS which is a free open-source geographic information system. 
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Figure 17 Scenario generator GUI 

 

The basic steps for creating a new custom scenario are the following. 

 Adding environmental variables 

 Add vehicles 

 Add pedestrians 

 Add obstacles 

 Add maneuvers 

 Add KPIS 

 Export to OpenSCENARIO format 

So, the user can generate a scenario which includes information like the map Carla will load, the path of 
ego vehicle, the attached sensors to the vehicle, additional vehicle and pedestrians, simulation duration, and 
specific events like a pedestrian crossing the road after the ego vehicle passes a specific point. 

The simulation can be recorded and can be rerun with different weather and lighting conditions. Therefore, 
in the first instance the ego vehicle and all the other agents will follow specific trajectories which will be 
exactly reproduced in the latter executions. 
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Finally, the results will be recorded in a rosbag (one per simulation run) and then stored using the data 
storage and transformation service. 

4.7.2.2 Algorithmic Evaluation 

The second part of the includes the evaluation of the integrated algorithms by using specific metrics like 
the ATE and the RPE. The user either selects and already created rosbag or creates a new one. In the latter 
case, the procedure of the previous chapter is followed. Afterwards, the nodes that implement the algorithms 
under evaluation are launched. These, nodes consume data published under specific topics that were 
encapsulated in the rosbag and their results are stored using the data transformation service.   
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5 Security Runtime Monitoring and Management (SRMM) 

5.1 Presentation of the Security Runtime Monitoring and Management 

Security Runtime Monitoring and Management (SRMM) is the main security component of CPSoSAware, 
developed by the Task 4.3 - CPSoSAware Security Runtime Monitoring and Management (SRMM) Design 
and Development. Its objective is to detect attacks and anomalous behaviours that are a threat to the system. 
The module is based on the XL-SIEM asset that ATOS brought to the project. XL-SIEM is a cross-
correlation Security Information and Event Management (SIEM) system, with complex multi-level security 
run-time monitoring. 

The SRMM detects threats by correlating security events collected from different parts of the system. To 
gather the events, this component deploys monitoring sensors throughout the monitored infrastructure. At 
the same time, there are several correlation engines in the different system layers that evaluate whether the 
event sequences match configured rules, which model the behaviour that we want to detect. When a 
sequence of security events matches a rule, the associated alarm is raised. In addition, the alarm can be used 
as security events in the same SIEM or in another SIEM, performing a cross-correlation process. Finally, 
the system may execute actions that are associated with the specific alarm. Each SIEM deployed in the 
system may have its own rules, depending on the systems that it has to monitoring and the layer. 

5.2 Position in the architecture and the interfaces 

The SRMM is a hierarchy of XL-SIEMs where the lower SIEMs correlate local events, while the upper 
SIEMs have a more general view of the system. The first SIEMs receive the security events only from 
agents. On the other hand, the upper SIEMs can receive events from agents and lower SIEMs. 

Agents are small services that monitor logs, parsing the raw information produced by the different sensors 
and normalising this information into the defined JSON format. For each source of information, there is a 
plugin that instructs the agent on which events are relevant and have to be parsed, how they have to be 
mapped into security events and which parts of the information have to be obfuscated. Finally, the agent 
sends the security events that it generates to the XL-SIEMs through TCP port 41000. 

Regarding the architecture of the XL-SIEMs, there are three levels for this project: 

 Lightweight SRMM: These SIEMs are in the lowest position in the hierarchy, deployed inside the 
vehicles. They receive the security events from sensors that monitor the different devices inside auto-
mobiles. These SIEMs have only a small set of rules that perform the local intelligence, thus they do 
not need a lot of computing capacity. This allows the system to maintain service to the vehicle even if 
the vehicle loses communication and becomes isolated. They also send the relevant security events to 
the upper XL-SIEMs, performing the first filter.     

 Area SRMM: These XL-SIEMs manage the information of a physical area, receiving security events 
from the sensors deployed in it (the Lightweight SRMMs inside) and from other nearby area SRMMs. 
These security events are analysed, raising area alerts that are send to the Global SRMM and broad-
casted to the Lightweight SRMM in the area. In addition, the relevant security events from below are 
forwarded to the Global SRMM, filtering out the useless information. These SIEMs broadcast the 
alarms generated by the Global SRMM to the Lightweight SRMMs below them. 
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 Global SRMM: It is a single XL-SIEM that sits at the top position and has a global overview of the 
CPSoSAware system. It receives security events from the Area SRMMs and the global agents. While 
its rules implement general intelligence, broadcasting alarms to all Area SRMM. 

This hierarchy architecture enables distributed intelligence with high availability and workload sharing. 
Because the lower SRMMs process and filter events, improving performance, while they can work in 
isolation from higher SRMMs. More details of the architecture of SRMM can be found in D4.8 [23]. 

The nodes of the system use MQTT, which is a bidirectional protocol with two roles: publishers, which 
generate the information, and subscribers, which consume the information. The bidirectionality of the 
communication allows that the upper nodes to broadcast messages to the lower nodes. In addition, there is 
a broker that manages the communication, routing messages between clients. In the CPSoSAware project, 
the Lightweight SRMMs are the publishers for their corresponding Area SRMM. While the Area SRMMs 
are the publisher for the Global SRMM. In addition, each Area SRMM is the subscriber to nearby Area 
SRMMs. This communication mechanism allows Lightweight SRMMs, which are inside the vehicles, to 
switch between Area SRMMs quickly. This also allows a new Area SRMM to be deployed with a small 
reconfiguration of the neighbouring SRMMs. More details on the architecture and the communication 
system can be found in D4.7 [24].  

5.3 Technologies and hardware requirements the SRMM 

SRMM is a complex system, composed of several heterogeneous subsystems, more details the reader is 
referenced to D4.8 [23]. At the same time, each subsystem uses different technologies. To enable easier 
deployment and integration, all components of each SRMM is implemented within a docker container.. 
This solution also avoids conflicts between component dependencies. In the table below there is a list of 
SRMM components with the required versions and the necessary hardware requirements: 

Component Subcomponent Software Hardware 
Global SRMM 
Area SRMM 
 

Topology: 
• Zookeeper 
• Nimbus 
• Supervisors 

 
• zookeeper:3.6.2 
• storm:2.2.0 
• storm:2.2.0 

• Linux OS with Docker  
• 4 vCPU (8+ vCPU would be 

recommendable). 
• 4GB of RAM (8GB+ RAM 

would be recommendable)  
• 5GB+ of HDD/SDD 

Lightweight 
SRMM 

Light topology: 
• Zookeeper 
• Nimbus 
• Supervisors 

 
• zookeeper:3.6.2 
• storm:2.2.0 
• storm:2.2.0 

Hardware requirements are lower 
than other SRMMs, however load 
testing is pending. 

SRMM BBDD  mariadb:10.2 • Linux OS with Docker 
• 1 vCPU (2+ vCPU would be 

recommendable)  
• 256MB of RAM (512MB + 

RAM would be 
recommendable)  

• 5GB+ of HDD/SDD 
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SRMM Dashboard  php:5.6.38-apache • Linux OS with Docker 
• 1 vCPU (2+ vCPU would be 

recommendable).  
• 256MB of RAM (512MB + 

RAM would be 
recommendable) 

• 5GB+ of HDD/SDD 
Agent  debian:stretch-20201209 

python 2.7 
• Linux OS with Docker 
• 1 vCPU (2+ vCPU would be 

recommendable).  
• 128MB of RAM (256MB + 

RAM would be 
recommendable) 

• 5GB+ of HDD/SDD 

MQTT broker  rabbitmq:3.7.14-
management 

• Linux OS with Docker 
• 1 vCPU (2+ vCPU would be 

recommendable).  
• 128MB of RAM (256MB + 

RAM would be 
recommendable) 

5.4 Technical details about the interfaces 

The SRMM is a security component that is distributed through whole system and receives information from 
many sources, so it has several input interfaces throughout the system. However, due to the heterogeneity 
of the devices in a CPSoS, it is necessary that all sensors generate the output in a common format. For this 
reason, the SRMM is complemented by an agent, which transforms the raw information generated by the 
different sensors to a standard security event. Figure 18 depicts the fields of these events. The XL-SIEMs 
receive them on TCP port 41000. Deliverable D3.5 [25] describes how the agent maps the raw information 
into security events.  
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Figure 18. XL-SIEM event data: JSON format 

On the other hand, the SRMM produces alarms as output, Figure 19 depicts JSON format of the alarms. 
They may be displayed in the dashboards of the different level, warning of a threat; they can be sent through 
a MQTT channel; or the action associated with the alarm can use any API to communicate an alarm. This 
last is method used to communicate information to the CARLA Simulator and V2X Simulator, as described 
in D1.4 [2]. 

"a": {“type”: <string>,  "userdata5": <string>, 

"date": <string>,   "userdata6": <string>, 

"device": <string>, "userdata7": <string>, 

"interface": <string>, "userdata8": <string>, 

"plugin_id": <integer>, "userdata9": <string>, 

"plugin_sid": <integer>, "log": <string>, 

"src_ip": <string>, "fdate": <string>,   

"dst_ip": <string>, "tzone": <string>, 

"src_port": <string>, "event_id": <string>, 

"dst_port": <string>, "username": <string>, 

"userdata1": <string>, “password”: <string>, 

"userdata2": <string>, "filename": <string>, 

"userdata3": <string>, "organization": <string> 

"userdata4": <string>, } 
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Figure 19. XL-SIEM alarms JSON data format 

5.5 Application on the Automotive use case 

In deliverable D4.8, there are four demonstrations of the SRMM capacities. The first is a detection of a 
Denial of Service (DOS) where an attacker infects a vehicle that will start to send a high number of 
messages to the channel. This unusual traffic causes an overload of communication capacities, which results 
in other vehicles not be able to access the services. When this happens, the SRMM system detects the 
situation and raises an alarm. 

The other three demonstrations are examples of how the SRMM can detect and mitigate an attack against 
a device inside the vehicles. In the second case, a sensor detects a firmware update produced by an attacker. 
The Lightweight SRMM compares the new version of the firmware with manufacturer’s version list, and 
if it does not match, the XL-SIEM raise an illegitimate update alarm, which is the detection phase. 

{"AlarmEvent": { 
 "DST_IP_HOSTNAME": <string>, 
 "RELATED_EVENTS": <string>, 
 "DST_IP": <string>, 
 "PLUGIN_NAME": <string>,  
 "SRC_IP": <string>, 
 "PRIORITY": <integer>, 
 "RELIABILITY": <integer>, 
 "SUBCATEGORY": <string>,  
 "USERDATA3": <string>,  
 "USERDATA4": <string>, 
 "PLUGIN_SID": <string>,  
 "USERDATA1": <string>, 
 "USERDATA2": <string>, 
 "ORGANIZATION": <string>,  
 "CATEGORY": <string>,  
 "PLUGIN_ID": <string>,  
 "USERNAME": <string>,  
 
 
"FILENAME": <string>,  
"BACKLOG_ID": <string>,  
"RELATED_EVENTS_INFO": {List of <Event>}, 
"PROTOCOL": <integer>, 
"RISK": <integer>, 
"SRC_PORT": <integer>, 
"SENSOR": <string>, 
"SRC_IP_HOSTNAME": <string>, 
"SID_NAME": <string>, 
"USERDATA7": <string>, 
"DATE": <string>, YYYY-mm-dd HH:MM:SS 
"USERDATA8": <string>, 
"USERDATA5": <string>, 
"USERDATA6": <string>, 
"PASSWORD": <string>, 
"USERDATA9": <string>, 
"DST_PORT": <integer>, 
"EVENT_ID": <string>}} 
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Associated with the alarm, an action is launched that updates the devices with the latest version of the 
manufacturer's firmware, mitigating the attack. 

The third case is an extension of the previous demonstration in which several vehicles in an area are infected 
in the same way. The attacks are mitigated by the Lightweight SRMM, raising the illegitimate update alarm. 
When multiple alarms arrive at the Area SRMM, an alarm is raised that has a mitigation action associated 
with it. The action blocks the source (URL and IP) of the malicious firmware on all vehicles within the area.  

Finally, the last demonstration mitigates and solves possible future attacks. In this case, the illegitimate 
update alarms come from several areas, so the Area SRMM cannot mitigate the attack because each XL-
SIEM does not receive enough security events to trigger an alarm. All these security events reach the Global 
SRMM which raises an illegitimate update alarm that has associated blocking the malware source in all 
vehicles that belong to the system, as in the previous case. In addition, this SRMM create a report with the 
details of the attack, which should be notified to the manufactures to correct the vulnerability. When a 
manufacturer releases a new version of the firmware, the Global SRMM broadcasts an alarm with the 
information of the update. At that point, each Lightweight SRMMs have to evaluate whether its vehicle has 
the affected device and launch the update if necessary. 

5.6 Implementation and future work 

ATOS brough to the project the XL-SIEM, which is the correlation engine of events, and the agent to 
normalise the raw events from the sensors. With these two components, ATOS also bought a set of plugins 
for common sensors and the rules that detect threats using the events from these sensors. In addition, ATOS 
has integrated RabbitMQ software, which implements the MQTT protocol used in the project, into the 
communications output. 

During the project, ATOS has developed plugins for the sensor created by other partners and the rules to 
handle the security events generated by these sensors. Until the end of the project, ATOS is going to connect 
the Lightweight SRMM using MQTT brokers that are deployed inside vehicles by I2CAT, more details in 
D4.7 [24]; develop plugins and rules for the sensors that the partners release; and implement the 
communication with the CARLA and V2X simulators. 
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6 Hardware Acceleration Components 

In this section, the implementation and integration aspects of technical components related to hardware 
acceleration are presented. A brief description of these components, as reported in more details in D1.4 [2] , 
is given below. 

Pocl-remote  (TC2.2.2): Scalable distributed OpenCL runtime layer with P2P event synchronisation capa-
bilities. 

ML Hardware Accelerator IP Cores (TC2.3.1): FPGA-based IP core components (interfaces) focused 
on ML/DNN computations. The FPGA IP cores will be automatically generated from ONNX based 
ML/DNN models by using an appropriate ML framework. The IP cores will be seamlessly integrated in the 
PoCL-based OpenCL run-time system. 

Modelling Orchestration Tool (TC2.5.1): The modelling orchestration tool captures the CPS overall, 
manages individual CPS inputs and outputs between other CPSs, and orchestrates the CPSoS components 
in order to achieve a model of models. 

User Behaviour Monitoring (TC3.1.3): The user behavioural monitoring will be based on CPSoSaware’s 
collaborative sensory multi-modal fusion mechanism and will be based on algorithms for physiological and 
behavioural monitoring that will facilitate the evaluation of cognitive load/situational awareness develop-
ment of a smart sensing module to allow inertial and optical sensor fusion, providing 6DoF pose estimation, 
thus dealing with occlusions and drifts. The specificities of the algorithms will be defined by the system 
requirements and use cases. 

AI Acceleration (TC3.1.4): DCNNs achieve ground-breaking performance in a great variety of applica-
tions, including classification tasks such as object recognition.  However, DCNNs are computationally ex-
pensive, meaning that they usually demand high-performance platforms for their implementation. The goal 
is the study of DCNN acceleration / compression techniques for their effective implementation in embedded 
platforms, lower the computational cost (number of operations, storage requirements) with the least possi-
ble loss in accuracy. Specifically, our efforts are focused on pruning and sharing techniques that can achieve 
considerable acceleration without significant performance loss and can be applied to pre-trained DCNNs. 
These techniques are orthogonal and could potentially be combined. 

Pocl-accel (TC3.2.1): This is a Generic OpenCL driver (for POCL) to interface with custom devices (hard-
ware accelerators) from the OpenCL API. 

TCE (openasip.org) Soft Cores (TC3.6.1): Customised processors designed using TTA-Based Co-design 
Environment (TCE), an open source application-specific instruction set toolset based on the transport-trig-
gered architecture (TTA). Various hardening features can be added via replication of functionality and 
special instructions. 

OpenCL Wrapper for Hardware IP Cores (TC4.1.1): OpenCL kernel description interface to associate 
Hardware IP cores with the OpenCL models. 
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Profiling (TC4.1.2): Profiling for a highly heterogeneous platform consisting of multicore ARM processor, 
ASIP processors as well as FPGA fixed logic IP. FPGA logic is a “morphable” computation resource with-
out predefined computational capabilities. All SW nodes will be handled by PoCL remotely enabling dy-
namic remapping and re-scheduling opportunities. 

Optimization (TC4.1.3): This component aims to provide all necessary optimizations in order to recon-
fiure and redesign the System’s CPSs/CPHSs so as to holistically match the systemic design and operational 
goals/parameters achieving reliability, robustness, responsiveness, CPS/CPHS criticality, energy effi-
ciency, and security/trust. 

Commissioning of Hardware Components in CPSs: The Developed Hardware components after 
HW/SW partitioning will need to be deployed in the CPS. We focus on the dedicated HW accelerator 
components designed in other tasks and we aim at structuring the deployment/commissioning mechanism 
in the CPS SoC FPGA Fabric. In T4.6 we will focus on the commissioning mechanism from the System 
layer perspective while in task T5.2 we will focus on the commissioning mechanism infrastructure (support) 
at the CPS layer (in each CPS). 

These components have been applied and evaluated on two use cases developed by Up: a)a CNN application 
implementing from a single Handwritten Digit Recognition (HDR) to a complicated SqueezeNet 
classification and b) Driver Status Monitoring (DSM) system that detects driver drowsiness by counting 
the yawnings and sleepy eye blinks of the driver. The integration to higher level applications of both the 
use cases as modules is described by the respective input/outputs. Then, for each component (as listed in 
D1.4 [2]) that has been implemented in the two use cases, its input/output data structures are also referenced 
in order to comprehend how this component has been integrated within a use case and how these 
components are communicating with each other. 

6.1 CNN module implementing HDR, SqueezeNet 

Any application that concerns the commissioning of CPS components that operate in parallel is appropriate 
for implementation on the PoCL framework (OpenCL systems implemented on FPGAs, GPUs, etc).  

The first use case examined by UoP concerns the implementation of Deep NNs (DNNs) on the PoCL 
framework. More specifically, Convolutional NNs (CNNs) have been implemented in the PoCL 
environment with extensions e.g., the DMA support of PoCL for the fast input argument passing. The 
simpler CNN that was implemented concerned the recognition of handwritten characters (trained on the 
MNIST dataset). It consisted of 2 fully connected layers. A more complicated CNN was based on 
SqueezeNet v1.1 for the classification of 1000 object categories using the ImageNet 2012 dataset. The 
architecture of this CNN consisted of 18 convolution, 3 max-pool, and 1 average pool layers. 

Input: Grayscale image with 28×28 (HDR) or RGB image with 227×227 (SqueezeNet) resolution. 

Output: a vector of 10 (HDR) or 1000 (SqueezeNet) values representing the confidence in each category. 
These values are implemented either as 32-bit floating points or as int8. 
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Figure 20 HDR application with Pocl 

The environment of the HDR application is shown in Figure 20 with the TC annotated in blue boxes to 
make clear on how they are related to the various application modules. 

The following TC components listed in D1.3 have been integrated in the CNN PoCL framework: 

Pocl-remote: PoCL has been used to remotely invoke the CNN core that performs handwritten character 
recognition 

Input: Grayscale image with 28×28 (HDR) or RGB image with 227×227 (SqueezeNet) resolution and a 
command to start classification. 
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Output: a vector of 10 (HDR) or 1000 (SqueezeNet) values representing the confidence in each category. 
These values are implemented either as 32-bit floating points or as int8. 

ML Hardware Accelerator IP Cores: FPGA-based IP core has been used to implement CNN/DNN 
computations that are seamlessly integrated in the PoCL-based OpenCL run-time system. 

Input: Grayscale image with 28×28 (HDR) or RGB image with 227×227 (SqueezeNet) pixel values and 
matrices with the CNN weights. The HDR NN is implemented as 2 layers, the weights of the 1st layer are 
764×30, and of the 2nd layer 30×10. In the SqueezeNet 1.24 million weights have to be provided. Weights 
represented either as 32-bit floating points or int8. 

Output: a vector of 10 (HDR) or 1000 (Squeezenet) values representing the confidence in each category. 
These values are implemented either as 32-bit floating points or as int8. 

Model Transformation to OpenCL: The NN model representation was adapted to be compatible with 
OpenCL 

Input: The HDR NN is implemented as 2 layers, the weights of the 1st layer are 764×30, and of the 2nd 
layer 30×10. Number of weight values in the SqueezeNet CNN: 1.24 million.  

Output: OpenCL/C/C++ code that implements this CNN architecture on FPGA. 

Xilinx XRT KPI Monitoring: XRT facilities that support dynamic reconfiguration have been employed. 

Input: Xilinx xclbin files that implement FPGA core functions.  

Output: Indication about the current xclbin file that has been used. 

AI Acceleration (implementation of the “ML Hardware Accelerator IP Cores” component as AI-
CNN): DNN/CNN operations are appropriate for hardware acceleration since there aren’t strict 
requirements for data transfer while the computational overhead is high. These NNs usually demand high-
performance platforms for their implementation with the least possible loss in accuracy. Pre-trained NNs 
have been used in our applications. 

Input: Grayscale image with 28×28 (HDR) or RGB image with 227×227 (SqueezeNet) resolution. 

Output: a vector of 10 (HDR) or 1000 (SqueezeNet) values representing the confidence in each category. 
These values are implemented either as 32-bit floating points or as int8. 

Pocl-accel :PoCL based HW accelerator has been implemented for the acceleration of CNNs on FPGAs. 
This module actually calls the AI Acceleration component passing as arguments the image and the CNN 
weights. The outcomes of the AI Acceleration component are feeding back the calling Pocl-Accel 
component. 

Input: Grayscale  image with 28×28 (HDR) or RGB image with 227×227 (SqueezeNet) resolution 
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Output: a vector of 10 (HDR) or 1000 (SqueezeNet) values representing the confidence in each category. 
These values are implemented either as 32-bit floating points or as int8. 

OpenCL Wrapper for Hardware IP Cores :OpenCL kernel description interface is used to associate the 
Hardware IP cores that implement the computationally intensive operations of a CNN. 

Input: Grayscale  image with 28×28 (HDR) or RGB image with 227×227 (SqueezeNet) resolution. 
Argument buffers implemented in C/C++ format. 

Output: a vector of 10 (HDR) or 1000 (Squeezenet) values representing the confidence in each category. 
These values are implemented either as 32-bit floating points or as int8. These arguments are described as 
OpenCL buffers/pointers. 

Profiling & Optimization :The selection of the computationally intensive CNN operations to be 
implemented in HW was performed based on profiling at various levels (application level, HLS estimations, 
XRT real time profiling). 

Input: C/PoCL code chunks. 

Output: Utilisation, measured latency of the code chunks, required memory and power consumption, 
resources (if implemented in hardware). 

Commissioning of Hardware Components in CPSs :An XRT based “system-call” method that allows 
dynamic reconfiguration of the hardware in the PoCL platform has been successfully employed as will be 
described in the next paragraphs. 

Input: Xilinx bit files implementing hardware functions. 

Output: Downloading of the bit files to FPGA. 
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6.2 DSM module 

 

Figure 21 DSM Video for tracking application architecture 

The second use case concerns a Driver Status Monitoring (DSM) application which is responsible for 
detecting driver drowsiness and distraction from yawning, eye blinks, and head movement. This application 
is based on an Ensemble of Regression Trees (ERT). The DSM application has been developed using Xilinx 
Vitis platform and Xilinx RunTime (XRT) library for a ZCU102 target board.  The detailed architecture of 
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the DSM application is described in the deliverables D3.2, D4.6 and D5.1. The architecture of this DSM 
video tracking application with the technical components annotated in blue boxes is displayed in Figure 21. 

Input: Video or camera source of any common format (mp4, avi, etc), OpenCV face detector (classifier xml 
format), pretrained tracker for shape alignment (bin format). 

Output: video with the annotated landmarks and information about yawnings, eye blinks encountered stored 
in SD card of the FPGA, an ASCII text stream informing periodically about the facial shape landmark 
coordinates, the encountered yawningns, eye blinks, the rejected frames and the metrics such as PERCLOS, 
MAR that are used to recognize yawnings, and eye blinks. 

The following TC components have been integrated in the DSM application: 

ML Hardware Accelerator IP Cores: Computationally intensive ERT processing operations 
implemented as HW kernels. More specifically, the Regressor::Tracker() and the nested Tree::Tracker() 
routines of the DEST package were implemented in hardware. 

Input: Current facial shape estimation (68×2 32-bit floating point numbers), tree node split information (2 
buffers of Trees × Nodes uint32), tree node thresholds (Trees × Nodes 32-bit floating point numbers), sparse 
image pixel intensities (P bytes), correction factors (Tree×Nodes×68×2 32-bit floating point numbers).  

Output: The updated current facial shape estimation (68×2 32-bit floating point numbers). 

 OpenCL Wrapper for Hardware IP Cores: OpenCL used to invoke a HW kernel from the top level SW 

Input: A frame of a video or camera source of any common format (mp4, avi, etc), OpenCV face detector 
(classifier xml format), pretrained tracker for shape alignment (bin format). 

Output: The inputs of the ML Hardware Accelerator IP Cores in OpenCL format i.e., current facial shape 
estimation (68×2 32-bit floating point numbers), tree node split information (2 buffers of Trees × Nodes 
uint32), tree node thresholds (Trees × Nodes 32-bit floating point numbers), sparse image pixel intensities 
(P bytes), correction factors (Tree×Nodes×68×2 32-bit floating point numbers). 

Xilinx XRT KPI Monitoring: XRT is used to dynamically reconfigure the HW kernels  

Input: Xilinx xclbin files that implement FPGA implemented core functions, command for the selection of 
the appropriate xclbin. 

Output: Indication about the current xclbin file that has been used. 

Modelling Orchestration Tool: Based on environmental conditions indicated by the system inputs, 
different ERT models implemented by the corresponding HW kernels may be configured. 

Input: Sensor inputs (e.g., light sensor to detect night/day, or real time clock) or external Convolutional 
Neural Networks recognizing male of female driver 
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Output: command (integer code) to the Xilinx XRT KPI Monitoring module to select the appropriate 
hardware kernel (xclbin file in Xilinx FPGAs). 

User Behaviour Monitoring: The target of the DSM module is actually to monitor the behaviour of the 
driver and more specifically if he/she is yawning, his eyes are blinking, he is experiencing a microsleep, or 
if he is distracted. This component can be used to provide the inputs of the Modelling Orchestration Tool. 

Input: The input of the DSM module: video or camera source of any common format (mp4, avi, etc), 
OpenCV face detector (classifier xml format), pretrained tracker for shape alignment (bin format), sensors 
(see Modelling Orchestration Tool input). 

Output: The inputs of the Modelling Orchestration Tool. 

Profiling: The selection of DSM operations that were appropriate for HW implementation were selected 
through profiling at various levels (application level, HLS estimations, XRT real time profiling). 

Input: ERT algorithm functions such as Estimate Similarity Transform, Landmark Position Prediction. 

Output: Utilisation, measured latency of the functions, required memory and power consumption, resources 
(if implemented in hardware). 

Optimization: The alternative pairs of (ERT models, HW kernels) are selected based either on optimization 
targets (see T4.1 for more details) or environmental conditions with dynamic reconfiguration. 

Input: Library of (model, kernel) pairs: each model is a pretrained tracker (bin format in DEST package) 
and each kernel is in Xilinx xclbin format. The constraints and the optimization goal are also inputs to this 
module. 

Output: The selected (model, kernel) pair that achieves the optimization goal. 

Commissioning of Hardware Components in CPSs: Dynamic reconfiguration of HW kernels through 
XRT by switching in real time between bitstreams that implement different HW kernels. 

Input: Xilinx xclbin files implementing hardware functions. 

Output: Downloading of the xclbin files to FPGA. 

More details about the integration of the DSM application can be found in the deliverables of T3.6 (dynamic 
reconfiguration), T4.1 (HW/SW partitioning optimization) and T5.1 (specifications of the generated HW 
kernels in the DSM application). 
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7 Intra – Communication Layer 

The system intra communication layer (SICL) undertakes the responsibility to establish efficient and 
reliable wireless communication technologies between the CPSoS and the CPSs. It consists of two essential 
technical components, the intra – communication simulation tool and the intra – communication manager. 
The intra – communication tool lies on the CPSoS layer of the CPSoSaware architecture while the intra – 
communication manager on the CPS/CPHS layer. This chapter will present the interfaces of the components 
that allow integration with other components of the CPSoSaware system along with the activities performed 
towards this direction. 

7.1 Intra – communication simulation component 

The intra – communication simulation tool (TC2.2.1) is designed and implemented to match network 
requirements imposed by the application and deployed to CPSoS, to proposed network technologies and 
configurations (e.g., modulation, signal strength, duty cycle etc.) and network topologies. The tool is based 
on the NS3 simulator, and it aims to accelerate the experimentation of models of dominant wireless 
protocols for intra-communication, e.g., BLE, ZigBee/802.15.4, Wi-Fi.  

The aim of this tool is to provide the functionality of the dominant NS3 network simulator as a service, and 
facilitate the iterative execution of simulations that aim on the near optimal configuration of the network 
interfaces in favour of the application requirements. This approach dictated the design and implementation 
of interfaces that support the interaction with the NS3 through respective input and output ports. The input 
ports of the implementation are used to trigger simulations and feed the simulator with the respective 
scenario and model configuration under evaluation. This interface follows the latest principles of integration 
patterns that apply in state-of-the-art web based and distributed systems. In that context a RESTful API was 
designed and implemented allowing the remote execution of REST calls that trigger NS-3 simulations with 
dynamic configuration feeds. The definition of this API is given in Figure 22 while Figure 23 describes the 
data structures to be transferred via this API REST calls. To facilitate this integration with the rest of the 
components, this API is published under a public URL available to the consortium partners: 

 

 

http://ns3.simulations.manager.esdalab.ece.uop.gr/v1/webjars/swagger-
ui/index.html?configUrl=/v1/v3/api-docs/swagger-config 
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Figure 22 NS3 REST API 

This interface allows external components to trigger the execution of simulation scenarios and get notified 
when the simulations are over through the respective callback. Apart from the potentials of integration with 
other simulators, this approach allowed integration with the Jenkins automation server which part of the 
TC4.6.1 component as described in Section 3 of this deliverable. In that sense, Jenkins is able to initiate 
simulations and get awareness about the status of the simulation execution (queued, running, completed). 

A second interface was implemented for exposing the simulation traces of the NS3 simulator. Thus, 3rd 
party systems could extract these traces and utilize the behaviour/traffic of a network for a specific 
configuration of the wireless technology. Besides the generation of files with the traces of the simulations, 
stored in the filesystem, a Java based REST client consumes the storage and transformation engine’s (SAT) 
REST API in order to store results of the simulations in the database. CPSoSaware or other external 
components are able to consume these traces/results either through the extracted files or the database. The 
details of this Simulation as a Service approach of the NS-3 are given in Deliverables 1.4 [2] and 4.2 [26]. 
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Figure 23 API Data Transfer Objects (DTOs) 
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7.2 Intra – communication manager 

The intra – communication manager incorporates mechanisms to apply network configurations and super-
vise their performance in a real deployment along with handling and forwarding the network traffic. Par-
ticularly, the functionality of intra – communication manager as described in D3.2 [27] can be summarized 
in the following two pillars:  

1. the deployment / commissioning: This component is responsible to deliver to the target system the 
configurations of intra – communication wireless interfaces. 

2. the execution mechanism: This component is responsible to handle RX/TX of data over the avail-
able intra – communication wireless interfaces. 

 

The first steps of integrating this intra – communication manager with other components was to define and 
implement the interface for transferring the various network configurations to the target platform.  

The basic prerequisite for the target platform, for this 1st version of the configuration of network interfaces, 
was to support the execution of the Linux Operating System. This allowed to build an API on top of the 
wireless interface’s drivers and kernel’s network settings and interact with the available configuration op-
tions. The implementation of this API is using the Python programming language and take advantage of 
utilities such as iwconfig [28] and nmcli [29] and sysctl [30]. 

The interface is based on the MQTT message passing protocol. This approach allowed the asynchronous 
transmission of network configurations to more than one target platflorms. The network configuration data 
transfer objects (DTOs) are published to respective MQTT topics where the target platforms are subscribed 
to listen. This MQTT topics follow the formats shown in Table 1. 

Table 1 Network configuration MQTT topics 

/network/configuration/# apply configuration to all subscribers 

/network/configuration/<device_id> apply configuration only for the spec-
ified device id 

/network/configuration/<device_id>/<interface> apply configuration only for specific 
network interface 

/network/configuration/<device_id>/<interface>/<parameter> apply value to specific parameter of 
network interface 

In parallel, a monitoring mechanism is running on the device is responsible to capture periodically the 
network performance and report it back to the CPSoSaware system layer. The performance is described by 
metrics such as packet loss, throughput and transmission delays. These performance vectors can then be 
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used for the evaluation and optimization of the applied network configurations. The performance vectors 
are published to the respective MQTT topics as show in Table 2. 

Table 2 Performance reporting MQTT topics 

/network/performance/# Listen to network performance vectors from all tar-
get platforms 

/network/performance/<device_id> Listen to network performance vectors from spe-
cific target platform 

This approach allows the automation mechanisms presented in Section 3 to integrate with the target 
platform and facilitate the commissioning of network configurations as throughout the simulation phase 
described in Section 7.1. 

The second pillar of handling and forwarding the network traffic through the wireless interfaces is a work 
in progress. It be finalized during the upcoming months and reported to the 2nd revision of this deliverable. 

7.3 Demo 

The described components will be demonstrated through standalone demonstrators for various patterns of 
traffic. The scope is that proposed solutions can handle heterogeneous traffic with regards to data volume 
and quality of service. This network will span from small volume of data, such as sensor reading to larger 
volumes that regard images, sound of video streams. In parallel, at least two different wireless interfaces 
will be supported (WIFI, BLE). The scope of the demonstrator will be to present that the intra – 
communication manager can handle efficiently all the generated traffic patterns by utilizing the available 
wireless network interfaces and through their optimization. This will be manifested through network 
performance statistics that will be captured and transmitted periodically. 
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8 AV Simulator 

Robotec integrated two modules used in validation of Autonomous Driving algorithms: 

• RoSi simulation platform – Unity based simulator used simulation of sensors and movement of all 
traffic agents 

• V2X Simulator - a co-simulator used for modelling of communication between traffic agents 

Thanks to integration of the mentioned simulators, it is possible to simulate and validate cooperative 
awareness algorithms (e.g. Cooperative Localization, Extended Perception). V2X Simulator creates a copy 
of the environment simulated in the AV Simulator (Figure 24), and thanks to ROS2 integration can be easily 
deployed on the other machine, what reduces the number of computations performed on the main simulation 
machine. 

 

Figure 24 Visualization of Rosi Simulator (left), and V2X Simulator (right). The same situation is replicated in two 
simulators 

8.1 Integration interface 

Communication interface between RoSi and V2X simulator (Figure 25) is based on ROS2. 
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Figure 25 High level integration diagram of RoSi and V2X Simulator 

For the communication of 2 simulators, the following custom ROS2 messages were created: 

• ShapesArray.msg  

geometry_msgs/Polygon[] shapes 

Array of polygons are used to share the representation of the environment (all static objects) as 
 well as meshes of dynamin objects (cars, trucks etc.) 

• VehicleState.msg 

std_msgs/String name 

std_msgs/Float32 x 

std_msgs/Float32 y 

std_msgs/Float32 z 

std_msgs/Float32 velocity 

std_msgs/Float32 heading 

VehicleState message is send from RoSi to V2X Simulator to replicate states of dynamic objects in the 
communication simulator, then to form actuall V2X messages and model the propagation of the messages. 
For Extended Perception scenarios, perception of the objects will also be shared using this ROS2 message 
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• V2Xmsg.msg 

std_msgs/String vehicle_name 

VehicleState[] vehicles_states 

V2Xmsgs represents messages that are successfully received by an object in V2X Simulator and are sent 
back to the main AV simulator (RoSi) to enable using extended cooperative awareness by Autonomous 
Driving algorithms controlling the behaviour of traffic agents 
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9 Conclusions 

Task 5.2 tackles the CPSoSaware integrated platform. This work in progress is presented in this 1st 
deliverable that reports a subset of the CPSoSaware components and their integration progress, with respect 
to the implemented interfaces and data structures that are exchanged among the integrated entities. These 
components have been listed with respect to the overall CPSoSaware architecture and the technical 
components collection as listed in D1.4 [2]. Moreover, an approach for automating and orchestrating the 
integration and deployment process of the components, has been presented. During the next months, the 
integration activities will progress further aiming to be integrated and demonstrated through the project’s 
pilots. The final integrations as manifested through the demonstrators of the project, will reported in the 
next and final version of this deliverable. 
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