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Executive Summary 
 
In this deliverable, we present a set of Extended Reality (XR) lifelong learning tools and interfaces implemented 
within three main components:  

(i) A geometry processing toolkit that includes a set of mesh and point cloud processing techniques required 
for modeling the 3D environment.   

(ii) A VR-based industrial training framework that includes also a semantic layer and focuses mainly on the 
needs of human-machine interaction for the manufacturing pillar.  

(iii) An AR–based CPHS user training toolkit customized for the automotive pillar to allow the evaluation of 
different interfaces.  

 
Specifically, the VR-based training framework helps operators adapt to changes in the environment and in the 
dynamic CPSoS, whether these may concern a new machine that is added to  the system or some new task process. 
It utilizes models of the workplace environment equipped with functionalities (a semantic layer) to allow 
interaction with a human operator (worker) in virtual reality. It can be used to transfer knowledge from experience 
to novice workers by allowing first to build personal training plans of a job task in a virtual gamified environment, 
and then to get trained in the completion of the specific task by following the recorded steps. By capturing the 
user performance, the novice user can experience the tasks through the expert’s eyes, or return to his own 
previous performance in order to self-evaluate the learning process. This component is demonstrated in the 
manufacturing industry pillar through an inspection and repair scenario with a collaborative robot. The second 
component, the AR–based CPHS user training toolkit, is aimed at training a human operator in the use of new AR-
based interfaces (human machine interfaces, HMIs), developed for increasing situational awareness and formal 
guidance, and assessing their utility and user acceptance.   
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1 Introduction 
 

1.1 Scope of the Deliverable 
 
An AR –based CPHS user training toolkit will be developed to help the user adapt to changes in the environment 
and the dynamic CPSoS, whether these may concern a new machine that is added to the system or some new task 
process. Users often encounter strong outer constraints such as time or occupation, thus more immersive 
technologies aim to better exploit the uniqueness of AR and design more effective virtual environments to 
improve the learning process. AR superimposes a computer-generated image on a user's view of the real world. 
Within this task we will use AR technologies to support on-site learning by giving contextually relevant and 
personalized guidance to the user. On-site learning has close connection to knowledge sharing, as learning can be 
supported both by formal guidance and knowledge shared by peers. Augmented reality tools and virtual 
workplace simulations make the guidance lively and engaging. Personal training plans can be built on the user 
models from WP2, as those models indicate personal development needs. Furthermore, re-enacting and re-
creating the on-site learning experience can be realized by using sensors, AR-tools, 3D scanning and rendering and 
360 video. By capturing the user performance, the novice user can experience the tasks through the expert’s eyes 
or return to his own previous performance in order to self-evaluate the learning process. The task will also develop 
off-site training solutions. This task will include the definition of the ΑR capturing and rendering components and 
development of appropriate networked virtual worlds for each Use Case and cater for collaborative training of 
users (drivers/operators). Virtual training scenarios will cover a broad range of user-desired activities, while 
performance and adaptation mechanisms collect data on trainee performance per task and generate 
recommendations to better assign users to specific tasks (see WP3). 
 
Below, we provide the video link for the discussed demos: 
 
https://drive.google.com/drive/folders/1w6Yb3TqtpXlVsBne9F3Kq6gxmfXRqWOG?usp=sharing 

 
1.2 Background 

 
Technologies related to the extension of the physical world (Virtual/Augmented reality) have recently started to 
gain substantial traction, as their applications range from industrial to medical and entertainment purposes. This 
trend is also supported by the amount of capital invested in these solutions, not only hardware-wise but also from 
the multiple published scientific papers, which indicate great interest by the research community. As a result, high 
quality, immersive experiences are being delivered to the end-user at faster rates, contributing to different areas 
of interest. 
Regarding the manufacturing sector, extended reality (XR) technologies may provide a great range of applications 
in any industrial environment for multiple reasons. To elaborate, the realistic 3D model representation in a virtual 
environment along with the respective spatial auditory feedback, can achieve great levels of embodiment for the 
end-user.   
Likewise, the deployment of this technology in the field of manufacturing is evolving rapidly due to the new 
possibilities provided by AR/VR/MR applications in industrial processes. The realistic representation of 3D models 
inside a virtual environment can offer a sense of embodiment, helping the design and preview of workspaces, 
adjusted on ergonomics, efficiency and other measurable factors. Spatial augmented reality visualizations can 
reduce the errors during industrial processes1, while the use of advanced user interactions within the virtual 
environment facilitates substantially the simulation of real-world training scenarios2. Thereby, simulations of work 
tasks in virtual environments allow avoiding onsite learning on real devices with possibly costly materials, or to 
practice on potentially dangerous actions (e.g., to train inexperienced health care professionals without the risk 
of harming patients), while it also provides the possibility for unlimited remote training experience. 
Several applications introduced maintenance task training with VR3 and MR4 setups but lacked authoring tools for 
the creation of the tutorial inside the virtual environment, or required the physical presence of the trainer 

 
1 Sreekanta, M. H., Sarode, A., and George, K. (2020). “Error detection using augmented reality in the subtractive 
manufacturing process,” in 2020 10th annual computing and communication workshop and conference, Las Vegas, NV, 
Janurary 6–8, 2020 CCWC. doi:10.1109/CCWC47524.2020. 9031141 
2 Azizi, A., Yazdi, P. G., and Hashemipour, M. (2019). Interactive design of storage unit utilizing virtual reality and ergonomic 
framework for production optimization in manufacturing industry. Int. J. Interact Des. Manuf. 13, 373–381. 
doi:10.1007/s12008-018-0501-9 
3 Dias Barkokebas, R., Ritter, C., Sirbu, V., Li, X., and Al-Hussein, M. (2019). “Application of virtual reality in task training in the 
construction manufacturing industry,” in Proceedings of the 2019 international symposium on automation and robotics in 
construction (ISARC), Banff, Canada, May 21–24, 2019. doi:10.22260/ISARC2019/0107 
4 Gonzalez-Franco, M., Pizarro, R., Cermeron, J., Li, K., Thorn, J., Hutabarat, W., et al. (2017). Immersive mixed reality for 
manufacturing training. Front. Robot. AI 4, 3. doi:10.3389/frobt.2017.00003 
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accordingly. Wang et al. proposed5 a different MR collaborative setup, with the expert streaming his/her AR 
environment and supervising the trainee interacting with his/her own VR environment. A platform for the design 
of generic virtual training procedures was proposed by Gerbaud et al.6, accommodating an authoring tool for the 
design of interactive tutorials and including a generic model to describe reusable behaviors of 3D objects and 
reusable interactions between those objects.  

 
  

 
5 Wang, P., Bai, X., Billinghurst, M., Zhang, S., Han, D., Lv, H., et al. (2019). “An mr remote collaborative platform based on 3d 
cad models for training in industry,” in IEEE international symposium on mixed and augmented reality adjunct, Beijing, China, 
October 10–18, 2019, ISMAR-Adjunct, 91–92. doi:10.1109/ ISMAR-Adjunct.2019.00038 
6 Gerbaud, S., Mollet,N., Ganier, F., Arnaldi, B., and Tisseau, J. (2008). “Gvt: a platform to create virtual environments for 
procedural training,” in 2008 IEEE virtual reality conference, Reno, NV,March 8–12, 2008. 225–232. 
doi:10.1109/VR.2008.4480778 
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2 Methodology 
 

The overarching goal is to empower human operators (being part of the cyber-physical system) and train them 
for better human-machine interaction or machine operation. The developed XR-based toolkit provides a set of 
knowledge sharing and lifelong learning tools for this purpose. Training in VR helps avoiding risks of real operating 
environments and allows to evaluate (with user-in-the-loop) different designs. This is achieved through four main 
components: 

1. Developing 3D models of the environment in virtual reality to be used for simulations. 

2. Add a semantic and interaction layer on the 3D models. 

3. Provide authoring tools that will allow to create/build a training tutorial (to transmit knowledge). 

4. Provide the interface that will allow to execute/run a training tutorial (to receive knowledge). 

 
In other words, our developed framework provides an improved user interface that facilitates the introduction of 
a semantic layer into the geometric objects and the design of a tutorial by attaching plug-n-play components to 
the Unity game-objects. The main requirement (that has to be addressed by the designer beforehand) is the 
segmentation of the 3D models (e.g., of a machine or a robot) into individual parts, which may appear as separate 
game-objects when imported to Unity. 
 
In the following sections, we first describe the developed techniques that allow to model the 3D environment and 
improve the quality of the 3D objects represented as meshes or point clouds (Section 3). For this purpose, different 
point cloud processing techniques were developed for denoising, as well as a point cloud registration technique 
that allows to map and replace a scanned (thus noisy) model with the corresponding template (i.e. ideal) model. 
The analysis that will be presented in the Section 3 has been published in IEEE Transactions on Multimedia9 and 
IEEE Transactions on Industrial Informatics15. Denoising and simplification is a very important step in our 
framework because it facilitates the definition and implementation of a semantic and interaction layer on the 3D 
models, as will be described in Section 4. Upon the introduction of a semantic layer on the modeled environment, 
Section 5 presents the XR-based training framework that allows creating and executing training tutorials providing 
support and lifelong learning7. 
 
 
  

 
7 Pavlou, M., Laskos, D., Zacharaki, E.I., Risvas, K., Moustakas, K.: XRSISE: an XR training system for interactive simulation 
and ergonomics assessment. Front. Virtual Reality 2 (2021) 
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3 3D Geometry Modeling and Preprocessing Tools 
 

The new generation 3D scanner devices have revolutionized the way information from 3D objects is acquired, 
making the process of scene capturing and digitization straightforward. However, the effectiveness and 
robustness of conventional algorithms for real scene analysis are usually deteriorated due to challenging 
conditions, such as noise, low resolution, and bad perceptual quality. The 3D scanning technologies are expected 
to create a revolution for Industry 4.0, facilitating a large number of virtual manufacturing tools and systems. Such 
applications require the accurate representation of physical objects and/or systems achieved through saliency 
estimation mechanisms that identify certain areas of the 3D model, leading to a meaningful and easier to analyze 
representation of a 3D object. 3D saliency mapping is, therefore, guiding the selection of feature locations and is 
adopted in a large number of low-level 3D processing applications including denoising, compression, 
simplification, and registration.   
 
The scanning and digitization of 3D objects of the physical world has recently attracted a lot of attention. 
Nowadays, there are many applications in different areas (e.g., entertainment, industry, medical visualization, 
military, heritage, etc.) that utilize 3D objects, either in the form of point clouds or 3D meshes. Future trends show 
that both this type of applications and the need for reliable 3D object representation will continue to increase. 
However, in practical scenarios, there are many factors that inevitably affect the quality of the acquired 3D objects, 
such as illumination conditions or relative motion between device and target during the scanning process, which 
can create random fluctuation of the data, the formation of additional and unnecessary points on the surface and 
points away from the surface (outliers). The device itself may also generate a pattern of systematic noise that is 
added to the surface of the 3D object. Additionally, due to time limitations or a random non-ideal acquisition 
angle, the point clouds may be incomplete or deformed, which can cause errors in matching and registration8. 
Researchers strive to overcome the existing limitations, trying to provide robust solutions that can be used in 
realistic circumstances and challenging scenarios. One of the most common research problems upon digitization 
is the recognition of partially observed objects in cluttered scenes, which is fundamental in numerous applications 
of computer vision, such as intelligent surveillance, remote manipulation of robots in manufacturing, autonomous 
vehicles, automatic assembly, remote sensing, retrieval, automatic object completion. We assume the existence 
of scanned point clouds that have been acquired using low-resolution and low-cost 3D scanning devices. These 
noisy point clouds represent real cluttered scenes consisting of different partially-observed objects, denoted as 
query models. Additionally, we assume the existence of high-quality and complete 3D models, denoted as target 
models, which serve as the ideal representation of the query models. The target models have been acquired using 
high-resolution scanning devices and have also been post-processed to remove noise and outliers. Even though 
the query and target models may represent the same object, they have different resolution, orientation, while the 
query object is subject to occlusion, making the processes of matching and registration an arduous task9. 

 
Visual computing technologies play an important role in several manufacturing tasks. Particularly nowadays, their 
role is crucial due to the new Industry 4.0 applications including manufacturing inspection10, quality control11, 
reverse engineering12, digital twin13, as well as autonomous repair operations. While the use of this new type of 
applications will expand, the number of the digital 3D models will also be increased, resulting in the interest for 
more accurate 3D model processing. The resolution and accuracy of the modern 3D scanners are constantly 
improving, making them even more attractive in several vision-based manufacturing tasks, allowing the accurate 
generation of dynamic virtual representations of physical objects which are then used for inspection. Inspecting 
the parts and repairing the damages or degradations are very basic tasks for many engineering or manufacturing 
products. More specifically, surface defect inspection is of primary importance for engineering part quality 
inspection, since surface defects affect not only the appearance of parts, but also their functionality, efficiency, 
and stability. This task mostly depends on human visual inspection by skilled inspectors. Human visual inspection 
is costly, labor-intensive, time-consuming, and prone to errors due to inspectors’ lack of experience or fatigue, 
bad environmental conditions, etc. Hence, automatic inspection of the surfaces using computational techniques, 
which is faster, more consistent, and robust, is highly desired14. We are motivated by the fact that there are a lot 

 
8 B. Lu and Y. Wang, “Matching algorithm of 3d point clouds based on multiscale features and covariance matrix descriptors,” 
IEEE Access, vol. 7, pp. 137 570–137 582, 2019. 
9 G. Arvanitis, E. Zacharaki, L. Vasa and K. Moustakas, "Broad-to-Narrow Registration and Identification of 3D Objects in 
Partially Scanned and Cluttered Point Clouds," in IEEE Transactions on Multimedia, doi: 10.1109/TMM.2021.3089838. 
10 S. von Enzberg and A. Al-Hamadi, “A multiresolution approach to modelbased 3-D surface quality inspection,” IEEE Trans. 
Ind. Informat., vol. 12, no. 4, pp. 1498–1507, Aug. 2016. 
11 C. Piciarelli, D. Avola, D. Pannone, and G. L. Foresti, “A vision-based system for internal pipeline inspection,” IEEE Trans. 
Ind. Informat., vol. 15, no. 6, pp. 3289–3299, Jun. 2019. 
12 Z. Jakovljevic, R. Puzovic, andM. Pajic, “Recognition of planar segments in point cloud based on wavelet transform,” IEEE 
Trans. Ind. Informat., vol. 11, no. 2, pp. 342–352, Apr. 2015. 
13 F. Tao,H. Zhang, A. Liu, andA.Y. C.Nee, “Digital twin in industry: Stateof-the-art,” IEEE Trans. Ind. Informat., vol. 15, no. 4, 
pp. 2405–2415, Apr. 2019. 
14 Y. Wang et al., “Vision based hole crack detection,” in Proc. IEEE 10th Conf. Ind. Electron. Appl., Jun. 2015, pp. 1932–
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of new-era industrial applications that require the digitization of physical objects or systems (e.g., inspection, 
digital twin, Industry 4.0, quality control, reverse engineering, etc.) creating or using already scanned 3D objects. 
However, this digitized information is massive and raw, leading to the need of new essential and meaningful 
identification of features that will facilitate robust processing in various applications. These facts stress the need 
to focus on the development of computational models of visual attention, whose well-known outcomes are the 
saliency maps. Saliency maps are compact 3D representations, generated by simplifying, annotating, and/or 
changing the representation of a physical object/system giving more emphasis to geometrically meaningful parts. 
The salient features also typically satisfy important requirements such as scaling, rotation, and resolution 
invariance that can simplify industrial processes15. 
 

 
Figure 1: [First line] (a) Original models. (b) Scaled and deformed models. [Second line] Enlarged representations of (b) with (c) red cycles 
for highlighting the deformed areas. (d) Heatmap visualization of HD applied to vertices. (e) Heatmap visualization of HD applied both to 
vertices and salient values. 

 

3.1 Utilizing 3D Saliency Mapping in Industrial Applications 

This subsection presents some indicative industrial applications in which the proposed saliency mapping can be 
utilized, facilitating several visual tasks. 
 
1) Utilization in the Manufacturing Industry for Quality Control Inspections: In the manufacturing industry, it is 
very common for objects to be produced in different sizes, retaining however the same form with the prototype 
model. Nonetheless, to assure quality, the reconstructed objects must satisfy a range of statutory and contractual 
obligations. In this case, inspection is used to verify and certify that the new scaled object has been manufactured 

 
1936. 
15 G. Arvanitis, A. S. Lalos and K. Moustakas, "Robust and Fast 3-D Saliency Mapping for Industrial Modeling Applications," in 
IEEE Transactions on Industrial Informatics, vol. 17, no. 2, pp. 1307-1317, Feb. 2021, doi: 10.1109/TII.2020.3003455.      
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in full compliance with all specified requirements and constraints. Figure 1 presents examples of inspection 
between real-scanned industrial objects, denoted as prototype models [Figure 1 (a)], and their corresponding 
scaled and deformed 3D objects [Figure 1 (b)]. Our purpose is to inspect if the new manufactured 3D object has 
the exact same design details as the original (regarding the fidelity of its form) and also to ensure that it has not 
been affected by irregularities encountered during the manufacturing processes. In Figure 1 (c), we present an 
enlarged representation of the scaled model, presented in Figure 1 (b), with red cycles that specify the deformed 
areas. The purpose of this application is to automatically identify deformations or other abnormalities from the 
surface of the manufactured 3D object in comparison with the original model. For easier comparison, we provide 
a heatmap visualization of the difference between the original and the constructed model. Blue color means that 
there is no difference between the compared models while red color indicates a big difference. Our method can 
find and highlight possible differences between two objects with similar shapes comparing the saliency values of 
their surface. In this way, it is capable to automatically inspect degradations of the surface standards of 
manufactured objects despite the constraints posed by scaled manufactured objects or objects created by 
different materials. For the comparisons between the original and the reconstructed models, we used two 
different approaches. In the first approach, we deployed the Hausdorff distance (HD) [Figure 1 (d)] of the 
normalized models (with values in the range [0–1]), while in the second approach, we used both HD and the salient 
values [Figure 1 (e)].   

 
2) Utilization for the Creation of Digital Twins and Aging Inspection: The proposed method supports detecting 
changes that can be caused by aging, comparing the saliency mapping of a 3D object having been acquired in 
two or more different temporal moments. In this way, our approach could be used to identify surface differences 
of the same object, affected by mechanical stress (e.g., a gear of a machine) or deteriorated due to environmental 
conditions (e.g., an ancient statue or columns). In Figure 2, we present visual representations of the same gear 
in four different occasions (i.e., in an early stage and after three consecutive temporal moments). This figure 
shows that our method is able to capture differences due to aging, so indiscernible, that even the human eye 
could not easily notice. 

 
Figure 2: Digital twin of gear model in an early stage and after three consecutive temporal moments. 

 

3.2 Registration and 3D Model Retrieval  

In this task, we focus on point clouds P consisting of n vertices v. The i-th vertex vi is represented by the Cartesian 
coordinates, denoted vi = [xi, yi, zi]T , ∀ i = 1,··· ,n. Thus, all the vertices can be represented as a matrix V = [v1, v2, 
··· ,vn] ∈ R3×n. Let’s also denote with ΨK

i the set of the K nearest neighbors of point i. Each neighboring point j can 
be indicated through its vertex coordinates (vj ∈ Ψi) or, for simplicity, only through its index (j ∈ Ψi). Point cloud P 
represents the scanned scene, consisting of different partially visible 3D objects. The objective of this analysis is 
to match and replace these objects with the corresponding high-quality 3D objects that are assumed to be 
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available beforehand. The irrelevant objects and the noise seriously affect the optimization process16,17,18,19,20,21,22. 
The main idea is that the obtained alignment solution can be improved if registration is guided by the most 
relevant salient part of the scene. The subsequent steps after the broad-phase registration include feature 
extraction, similarity assessment and saliency estimation. These steps are more computationally efficient when a 
part of the point cloud is used rather than the whole scene, as in some cases the scene might be very big. In the 
next sections, we describe how we robustify and accelerate computations at the same time by identifying and 
focusing only on salient parts of the scene that potentially correspond to the target model. This data selection 
step not only accelerates the calculations as it allows to search for pairs of landmarks (necessary for the final 
registration step) in a reduced space, but also leads to a reduction of the impact of the outliers.  
 
1) Broad-phase registration: First, a fast global registration technique23 is applied, which helps both for the 

decision of the matching and the final fine registration process, providing a better initial alignment between 
the query and the target object. 

 
2) Segmentation, robustification, feature extraction and matching: In parallel, the whole scene is divided into 

clusters using our parameter-free implementation of the popular density-based clustering algorithm24. Scene 
clusters, which are geometrically more similar to the registered point cloud of the previous step, are merged 
to create the query object. A robustification step is applied to facilitate the identification and removal of 
spurious point sets (obtained by imperfect scanning) that might blur the object boundaries affecting the 
registration and the execution time. The proposed feature vectors, combining pose with local multi-scale 
geometric information, are then extracted and used as descriptors for model to object correspondence 
assessment. Finally, based on the defined point similarity criterion, the best-related pairs of vertices between 
the matched (complete and partial) objects are identified.  

 
3) Narrow-phase registration: The final step includes the calculation of a rigid transformation that brings the 

previously identified pairs of corresponding points into alignment. 
 
 
3.2.1 Broad-Phase Registration 

 
The first step of the matching process is to align each target model to the scanned scene by global registration, 
without incorporating knowledge of the model class. We have selected a recently proposed global registration 
algorithm23 that has shown very good performance in different realistic datasets. The algorithm finds a number of 
candidate transformations by matching pairs in a roughly uniformly distributed subset of vertices of the input 
objects based on local shape properties (i.e., principal curvatures and the first principal direction). The optimal 
transformation is selected by localizing a density peak in the space of candidate rigid transformations. In order to 
find the density peak, a metric d(T1,T2) is needed, which measures the distance of a transformation T1 from a 
transformation T2. 
 
 
3.2.2 Scene Segmentation and Model-to-Object Matching 
 
1) Point Cloud Segmentation by Density-based Clustering: The semantic segmentation of the scene is often 
challenging, as the 3D objects lying in the scene might appear tangled with each other, due to abnormalities 

 
16 H. Chen, M. Wei, Y. Sun, X. Xie, and J. Wang, “Multi-patch collaborative point cloud denoising via low-rank recovery with 
graph constraint,” IEEE Transactions on Visualization and Computer Graphics, vol. 26, no. 11, pp. 3255–3270, 2020. 
17 W. Hu, X. Gao, G. Cheung, and Z. Guo, “Feature graph learning for 3d point cloud denoising,” IEEE Transactions on Signal 
Processing, vol. 68, pp. 2841–2856, 2020. 
18 F. Pistilli, G. Fracastoro, D. Valsesia, and E. Magli, “Learning robust graph-convolutional representations for point cloud 
denoising,” IEEE Journal of Selected Topics in Signal Processing, pp. 1–1, 2020. 
19 S. Luo and W. Hu, Differentiable Manifold Reconstruction for Point Cloud Denoising. New York, NY, USA: Association for 
Computing Machinery, 2020, p. 13301338. [Online]. Available: https://doi.org/10.1145/3394171.3413727 
20 K. Sarkar, F. Bernard, K. Varanasi, C. Theobalt, and D. Stricker, “Structured low-rank matrix factorization for point-cloud 
denoising,” in 2018 International Conference on 3D Vision (3DV), 2018, pp. 444–453. 
21 E. Mattei and A. Castrodad, “Point cloud denoising via moving rpca,” Computer Graphics Forum, vol. 36, no. 8, pp. 123–
137, 2017. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.13068 
22 S. Fleishman, D. Cohen-Or, and C. T. Silva, “Robust moving least-squares fitting with sharp features,” ACM Trans. Graph., 
vol. 24, no. 3, p. 544552, Jul. 2005. [Online]. Available: https://doi.org/10.1145/1073204.1073227 
23 L. Hruda, J. Dvoˆr´ak, and L. V´aˆsa, “On evaluating consensus in ransac surface registration,” Computer Graphics Forum, 
vol. 38, no. 5, pp. 175– 186, 2019. 
24 M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based algorithm for discovering clusters a density-based algorithm 
for discovering clusters in large spatial databases with noise,” in Proceedings of the Second International Conference on 
Knowledge Discovery and Data Mining, ser. KDD’96. AAAI Press, 1996, pp. 226–231. 
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created by imperfect scanning. Let’s also note that supervised25 or semi-supervised26 learning techniques that 
exploit prior knowledge in the form of shape priors or large training datasets with semantic annotations cannot 
be applied here to facilitate segmentation, because such large scale annotations are not always available. Our 
method is based on the assumption that, even if different objects overlap, (i.e. their distance is small in some 
regions), the local point density within each object is larger than these across different objects in the scene. 
Therefore for parcellation of the scene, we formulate a density-based algorithm, i.e., the Density-Based Spatial 
Clustering of Applications with Noise (DBSCAN)27, and implement a parameter-free approach, as explained in the 
sequel. More specifically, DBSCAN is used for the automated segmentation of a point cloud scene into separate 
clusters, which can be potentially used for matching and registration, reducing the total execution time. 
 
2) Salient Points Detection: The purpose of this step is to identify if each high-quality target model T ∈ Rnt×3 and 
each segmented query object Q ∈ Rnq×3 (where nt ≥ nq due to occlusion, low-quality, etc), represents the same 
structure. To define similarity between each set of point clouds we propose descriptors that encode spectral 
saliency. In the following, we describe the proposed features, and how they are used to extract point-to-point 
correspondences, necessary for the final registration step. The feature descriptors that we use are related to the 
saliency map of the point cloud. Saliency is a value assigned to each vertex of a point cloud that represents its 
perceived importance. In the case of raw point clouds without context information, saliency characterizes the 
geometric properties. High values of saliency represent more perceptually protruding vertices. In this work, we 
assume that geometric lines, corners, and edges are more distinctive perceptually than flat areas, according to 
the theory of visual saliency of sight. 
 
3) Multi-Scale Feature Extraction: First, the saliency values of the two compared models are normalized according 
to: 

                                                                                                                                                       
(1)                                                                                                                                     

where smax = max(max(st),max(sq)). Then, we perform spatial smoothing of the saliency map with a uniform kernel 
of increasing size and use the obtained values to form a feature vector with the multi-scale saliency values. The 
neighborhood size is selected as Ψk·K with K = 5 and k = 1,...,5, although these parameters may vary. Smaller scales 
increase feature vector specificity, while larger scales smooth out noise and irregularities making the shape 
descriptor more robust. The use of multiple scales allows us to combine both properties and leads to unique and 
accurate correspondences. This process is applied for each point cloud in T as well as Q. Specifically, for each 
vertex i, we create a corresponding vector ai ∈ R5. 
 

                                                                                                                   (2) 
                                     
Then, we concatenate the multi-scale saliency values with the vertex coordinates to obtain the final feature 
representation. Finally, for each one vertex, we create the augmented feature vector f ∈ R8, consisting of the 
vertex coordinates and the corresponding values of the vector a: 
 

                                                                                                                                                            (3) 
 
4) Model-to-Object Correspondence Estimation: The feature vectors f, calculated using Eq. (3), are used for the 
evaluation of similarity between the query and target point clouds, looking for their unique pairs of vertices p 
which exhibit the smallest feature vector distance. It is expressed through the l2-norm: 
  

                                                                                                                                (4) 
 

 
25 L. Landrieu and M. Simonovsky, “Large-scale point cloud semantic segmentation with superpoint graphs,” in Proceedings 
of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 4558–4567 
26 G. Erus, E. I. Zacharaki, and C. Davatzikos, “Individualized statistical learning from medical image databases: Application to 
identification of brain lesions,” Medical image analysis, vol. 18, no. 3, pp. 542–554, 2014. 
27 M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based algorithm for discovering clusters a density-based algorithm 
for discovering clusters in large spatial databases with noise,” in Proceedings of the Second International Conference on 
Knowledge Discovery and Data Mining, ser. KDD’96. AAAI Press, 1996, pp. 226–231 
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Finally, we keep only the first Kp pairs having the highest feature vector similarity. These Kp pairs are the best-
identified correspondences between model T and object Q. Let’s note here that we use the augmented feature 
vectors f, which include multiscale geometric descriptors in addition to 3D location, to avoid erroneous surface 
mapping obtained by chance due to accidentally good local geometric fit (small Euclidean distance) of the partial 
point cloud. These augmented feature vectors can ensure not only spatial proximity, but also local shape similarity. 
At this point of the methodology, the obtained pairs of corresponding vertices include matches for each target 
model T to each query object Qj, j ∈ {1,··· ,mq}, where the mq denotes the number of the query objects. To identify 
the correspondences, we introduce a dissimilarity factor cj which is defined as the mean distance of the Kp pairs of 
the best related vertices between model T and each object Qj. 

                                                                                                                                            (5) 
The lower the value of c, the more similar are the two point clouds. 

3.2.3 Narrow-Phase Registration 
 

Having identified and matched the target and query object pairs in the scene, the fine registration is achieved by 
identifying a set of corresponding points and then finding the optimal transformation that brings those pairs of 
points (control points) into alignment. In this step, we initialize the registration with the solution obtained from 
the global initial alignment and refine it using a weighted Iterative Closest Point (ICP) approach. The objective is, 
given a set of control points p = (vti,vqi) with vt ∈ T and vq ∈ Q, to estimate a rigid transformation T that minimizes 
a distance (or more general an error) function. 
 

3.3 Saliency Mapping Evaluation 

The proposed saliency mapping was evaluated using a) heatmaps visualization, b) 3D mesh simplification based 
on the saliency of the vertices, and c) a denoising application using the saliency values for finding the ideal patches. 
 
It should be emphasized that, in most cases, there is no ground truth saliency map or a reliable metric that can be 
used for benchmarking purposes. The typical way to evaluate a saliency map is via subjective evaluation. The 
subjective evaluation can clearly show if a specific saliency mapping has achieved its purpose, applied in a specific 
application, and provides a fair comparison with the results of other salient mapping methods. 
 
1) Heatmap Visualization of Saliency Mapping: Figure 3 presents the heatmap visualization of the 3D saliency 
mapping applied in different industrial 3D models. For easier comparison, all the results are normalized, taking 
values [0–1]. The used colormap for the visualization is the “jet” contenting 64 colors (deep blue = 0, deep red = 
1). Saliency mapping of a 3D object must provide visual information that can be easily recognizable. This means 
that different areas with different characteristics will be highlighted with a different color. On the other hand, 
different areas with the same characteristics will be highlighted with the same color. The experimental results 
show that our method [in Figure 3 (e)] successfully follows this direction providing more robust and meaningful 
results than the other approaches. More specifically, the highest values (red colors) represent very distinctive 
vertices (e.g., corners), while the lowest values (blue colors) represent flat areas. 
 

 
Figure 3: (a) Original model, and heatmaps visualization of saliency mapping based on (b) the eigenvalues of small patches (spectral 
analysis), , (c) the RPCA approach (geometrical analysis), as described in Section IV-A, (d) Wei et al.28, (e) Tao et al.29, (f) Lee et al.30, (g) Song 

 
28 N. Wei, K. Gao, R. Ji, and P. Chen, “Surface saliency detection based on curvature co-occurrence histograms,” IEEE Access, 
vol. 6, pp. 54536–54541, 2018. 
29 P. Tao, L. Zhang, J. Cao, and X. Liu, “Mesh saliency detection based on entropy,” in Proc. 6th Int. Conf. Digit. Home, Dec. 
2016, pp. 288–295. 
30 C. H. Lee, A. Varshney, and D.W. Jacobs, “Mesh saliency,” in Proc. ACM SIGGRAPH 2005 Papers, New York, NY, USA, 2005, 
pp. 659–666. 
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et al.31, (h) Guo et al.32, (i) Song et al. (CNN)33, and (j) our approach. 

2) Simplification Based on the Saliency of Vertices: Due to the easiness of creating digital 3D content nowadays, a 
great amount of information can be captured and stored. The information, acquired by 3D scanners, is usually 
huge, creating dense 3D models that are very difficult to be efficiently handled by other applications (i.e., high 
computational complexity). This information must be simplified, keeping only of the most representative 
information, and removing least important information. Simplification is a low-level application that focuses on 
representing an object using a lower resolution mesh without errors or with errors that cannot be easily perceived. 
The main objective of a successful simplification approach is to remove only those vertices which do not offer 
significant geometric information to the simplified 3D object and their removal will not change significantly the 
shape or perceptual details of the 3D object. Following this line of thought, we suggest removing the least 
perceptually important vertices, preserving only the most salient vertices for the reconstruction of the new 
simplified 3D model. More specifically, the steps of the suggested simplification process are as follows: i) All 
vertices are sorted based on their salient values; ii) the Kth vertices with the higher salient values remain; iii) the 
rest n − K less salient vertices are removed and the k-nn algorithm is used for the recreation of the new 
connectivity (triangulation). Figure 4 presents the simplified meshes under different simplification scenarios. 
 

 
Figure 4: Simplification of 3-D models using the saliency mapping of different methods, namely (I) Wei et al., (II) Tao et al., (III) Lee et al., 
(IV) Song et al., (V) Guo et al., (VI) Song et al. (CNN), and (VII) our approach, respectively (from up to down). (a) Heatmap visualization of 
the saliency mapping and simplified results using different simplification approaches, Cad (19 398 points): (b) 2000 (∼ 10.3%), (c) 4000 (∼ 
20.6%), Block (8771 points): (b) 2000 (∼ 22.8%), (c) 4000 (∼ 45.6%), Part Lp (4261 points): (b) 500 (∼ 11.7%), (c) 1000 (∼ 23.4%), Coverrear 
Lp (7872 points): (b) 2000 (∼ 25.4%), (c) 3000 (∼ 38.1%). 

 
3) Feature-Aware Denoising Based on the Saliency of Vertices: Guided normals filtering has been used in previous 
works34 providing excellent denoising results. We follow the same line of thought but we use a different way for 
the estimation of the ideal patch. More specifically, we select the patch that has the smallest value of Ψ (Figure 
5), since it consists of “less salient” faces (flat areas that are depicted with deep blue color). 
 

 
31 R. Song, Y. Liu, R. R. Martin, and P. L. Rosin, “Mesh saliency via spectral processing,” ACM Trans. Graph., vol. 33, no. 1, pp. 
6:1–6:17, Feb. 2014. 
32 Y. Guo, F. Wang, and J. Xin, “Point-wise saliency detection on 3D point clouds via covariance descriptors,” Vis. Comput., vol. 
34, no. 10, p. 1325–1338, Oct. 2018. 
33 R. Song, Y. Liu, and P. Rosin, “Mesh saliency via weakly supervised classification-for-saliency CNN,” IEEE Trans. Visualization 
Comput. Graph., to be published, doi: 10.1109/TVCG.2019.2928794. 
34 G. Arvanitis, A. S. Lalos, K. Moustakas, and N. Fakotakis, “Feature preserving mesh denoising based on graph spectral 
processing,” IEEE Trans. Visualization Comput. Graph., vol. 25, no. 3, pp. 1513–1527, Mar. 2019. 
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Figure 5: Ideal patch selection based on the proposed saliency mapping. 

 
Figure 6: Heatmaps of saliency mapping and denoising results using the methods. (a) Curvature co-occurrence histogram35. (b) Entropy-based 

 
35 N. Wei, K. Gao, R. Ji, and P. Chen, “Surface saliency detection based on curvature co-occurrence histograms,” IEEE Access, 
vol. 6, pp. 54536–54541, 2018. 



D5.3 AR based life long learning tools 

 

Page 17 of 45  

salient model36. (c) Mesh saliency37. (d) Mesh saliency via spectral processing38. (e) Point-wise saliency detection39. (f) Mesh saliency via CNN40. 
(g) Our approach. 

 

In Figure 5, we present an example of five candidate patches (for the face which is depicted by the yellow normal). 
In these examples, we show that the selected ideal patch is the one with the lowest value of Ψ (i.e., Ψ = 0.32 and 
Ψ = 0.37), representing the area with the less salient features. As we can observe, both the first and the last 
patches represent totally flat areas; however, they do not have the same Ψ value since the first patch consists of 
more salient triangles in comparison to the last patch, so the last area is preferable to represent the ideal patch. 
We also can observe that our method provides reliable results of saliency mapping even under the presence of 
noise, which makes it ideal for use in applications with noisy 3D models. The purpose of this example is the 
estimation of the most representative centroid normal (i.e., guided normal) in order to use it for a more efficient 
bilateral filtering41. The ideal selected patch must consist of normals with similar direction (in order to satisfy the 
normals’ consistency). The patches that have a lot of corners or edges must be banned (i.e., high salient values in 
our case) since they consist of normals lying in different directions. As a result, the value of Ψ would be totally 
misleading since it would not represent a specific planar area. Figure 6 presents the denoising results with 
enlarged regions for easier comparisons. The quality of the reconstructed models is evaluated using the metrics: 
i) θ representing the mean angle between the normals of the ground truth and the reconstructed faces and ii) the 
HD. 
 
 
  

 
36 P. Tao, L. Zhang, J. Cao, and X. Liu, “Mesh saliency detection based on entropy,” in Proc. 6th Int. Conf. Digit. Home, Dec. 
2016, pp. 288–295. 
37 C. H. Lee, A. Varshney, and D. W. Jacobs, “Mesh saliency,” in Proc. ACM SIGGRAPH 2005 Papers, New York, NY, USA, 
2005, pp. 659–666. 
38 R. Song, Y. Liu, R. R. Martin, and P. L. Rosin, “Mesh saliency via spectral processing,” ACM Trans. Graph., vol. 33, no. 1, pp. 
6:1–6:17, Feb. 2014. 
39 Y. Guo, F. Wang, and J. Xin, “Point-wise saliency detection on 3D point clouds via covariance descriptors,” Vis. Comput., 
vol. 34, no. 10, p. 1325–1338, Oct. 2018. 
40 R. Song, Y. Liu, and P. Rosin, “Mesh saliency via weakly supervised classification-for-saliency CNN,” IEEE Trans. 
Visualization Comput. Graph 
41 Y. Zheng, H. Fu, O. K. Au, and C. Tai, “Bilateral normal filtering for mesh denoising,” IEEE Trans. Visualization Comput. 
Graph., vol. 17, no. 10, pp. 1521–1530, Oct. 2011. 
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4 Semantic and Interaction Layer 

For the simulation of the industrial processes and the creation of training tutorials for lifelong learning, the 3D 
objects being part of the virtual environment have to be enriched with a semantic layer that describes the 
functionality of the components, to be used in the CPSoSaware use cases. For this purpose, we have developed a 
3D Simulation framework that can be used for the interconnection of the semantic and the geometric layer (Figure 
7). Our purpose was not to provide an automatic way to model the 3D scene, e.g., using input from depth cameras, 
but rather to develop a set of tools that allow to add and control properties of the objects, and simulate working 
tasks and scenarios. Such information is the Interaction Type which describes the kind of interaction with the 
component (i.e. Pressable, Rotatable, Grabbable, Pullable, Sittable, Wearable). For some rotational or 
translational semantics, a handful information is the Axis of transformation while a necessary attribute is the 
Bounding Box of the mesh for attaching colliders. 
 

 
Figure 7: Example of the interface of some components. The drilling machine is customized by the designer. The drill lever game-object 
contains a trackable component, a ghost indicator, a tutorial command and the continuous lever interactable component with its 
appropriate public settings exposed on the inspector. 

In order to allow interaction of a human user in virtual reality with the 3D models and tracking of this interaction, 
four component types are used, i.e., interactable component, machine component, trackable component, and a 
Tutorial Manager, as explained next. The interactable component holds information about the type of interaction. 
Interactable object instances inform the process they belong to about their state update. The process component 
contains all the interactable objects. It handles all the valid requests made by interactions and decides to act 
appropriately according to the specifications (Unity Components) designed within the framework. While the user 
interacts with an interactable object, the trackable component tracks the state of the object and communicates 
with the Tutorial Manager (in either build or play mode) to save the interaction or check if the interaction follows 
the orders of the tutorial. The Tutorial Manager handles the flow of the created tutorial and informs the user on 
the performed steps through a 2D visualization panel. More details on those components are provided next. 

• Interactable component: An interactable component is a property of any object requiring physical interaction 
with the user, such as discrete/continuous rotating levers, pressable buttons, squeezable knobs and grabbable 
objects that can be placed inside specific areas. Interactable objects can hold information about the type and the 
state of the interaction and the input required from the VR system (e.g., controllers) to activate them. The 
interactable component acquires and interprets the input of the user and then communicates with its parent 
machine component through a message passing mechanism, resulting in the dissociation of the human interaction 
and the behaviour of the machine, as followed in42. The tutorial designer can easily attach the interactable 
component to a 3D object, requiring physical interaction, through the Unity inspector and tune the settings each 
interactable provides, such as min/max rotation values, axis of rotation, push offset etc. The interactable 
component design is based on the core concepts of the XR Interaction Toolkit43. The core of the Interaction Toolkit 
is composed of a set of base Interactor and Interactable components, an Interaction Manager and helper 
components for improved functionality in drawing visuals and designing custom interaction events. The lack of 

 
42 Tanriverdi, V., and Jacob, R. J. (2001). “Vrid: a design model and methodology for developing virtual reality interfaces,” in Proceedings of the ACM symposium on 
virtual reality software and technology. (New York, NY:Association for Computing Machinery), VRST ’01, 175–182. doi:10.1145/505008.505042 
43 XR interaction toolkit 1.0.0. Available at: https://docs.unity3d. com/Packages/com.unity.xr.interaction.toolkit@1.0/manual/index.html 
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available interactables (only the grab interactable was supported) led us to exploit the helper classes and design 
new interactables based on the framework. 

• Machine component: It stores the set of actual machine functionalities in the form of dynamic properties, 
thereby allowing the operation modeling of a physical machine. The use of machine components helps in the 
design of self-aware machine-based behaviour and not just a collection of independent pairs of actions and their 
resulting effects. Through a message passing mechanism, the machine receives inputs from its child interactable 
components. The operational execution model of this component can determine the reactive behaviour of the 
machine, through a set of rules that determine the execution hierarchy of the requested actions and a set of 
activities-actions, using a methodology similar to Cremer et al44. A simple example describing the aforementioned 
control mechanism is a machine that does not execute any action requested from any interactable, until it gets a 
request to get enabled (i.e., an interactable 3D button that notifies the machine component to turn on). It should 
be noted that, as every machine has different rules of activation of behaviours, the “design” of a machine 
component is the only part requiring manual effort from the designer, without the need of high expertise in 
software development. The designer must specify distinct commands for the parts of the machine. The commands 
are modeled through a simple Unity component class (named “Tutorial command”) containing the ID of the 
command and the dynamic state which can be then passed through the message mechanism to the machine. Next 
the designer has to devise the machine component (which inherits the abstract MachineBase class of the 
framework) with the rules and actions activated when the machine receives interactions from its “children” 
interactables. The disjunction and abstraction of the tracking procedure from the interaction itself, facilitates the 
further extension of the framework with new and more complex interactions in the future. 

• Trackable component: Depending on the type of the performed interaction this component maintains record 
of the continuous or discrete state of the interactive objects, or the 3D position of the grabbable objects and the 
areas they are placed into. Its use is necessary only for interactions that shall be required to be tracked, while the 
user (instructor) creates the training scenario. The use of a trackable component instance together with the 
interactable component instance results in the tracking of the interaction by the Tutorial Manager (Figure 8). 

• Tutorial Manager: Differently from the previous three components the Tutorial Manager class handles the flow 
of the created tutorial and informs the user on the performed steps through a 2D visualization panel.  

 
Figure 8: Example of tractable and interactable components. 

 
 
  

 
44 Cremer, J., Kearney, J., and Papelis, Y. (1995). Hcsm: a framework for behavior and scenario control in virtual environments. ACM Trans. Model. Comput. Simul. 5, 
242–267. doi:10.1145/217853.217857 
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5 ΧR Training Framework 
 
The simulation framework is an in-house tool in which we load 3D (geometric) models of the environment that is 
created from scratch. This could be either through 3D scanning and post-processing techniques or through the 
use of primitive shapes (which we call "templates" or ideal models in some of the described techniques) and 
a computer graphics software, such as Blender. 
 
The developed XR-based toolkit consists of two modules: 

1. The XR Tutorial Creation module which allows an (experienced) operator to create a tutorial/procedure 
of specific steps in VR, record these and then upload them to the CPSoSaware platform for future use. 

2. The XR Tutorial Execution module which allows a novice operator to use the developed tutorials to get 
trained in VR and learn how to interact with the available CPSs. The operator follows the indications about 
the steps he/she needs to execute, while a “difficulty” parameter determines the number of visual hints 
and indications provided to support the trainee. 

 
Both modules share common VR/XR-based technological tools mainly targeting the interaction of a real user with 
objects in a modeled 3D scene. Their development is based on Unity3D which facilitates the design of interactive 
XR training scenarios. Specifically, we exploited the Unity XR Plug-in framework, which provides the ability to 
integrate cross platform XR applications regardless of the utilized hardware. The user interactions are based on 
the extension of the XR Interaction Toolkit45, a customizable high level interaction system, as described in the 
previous section.  

 
For the purposes of an easy and intuitive navigation of the user inside our framework, we developed a main menu 
scene, through which the user can proceed on setting up the desired environment (Figure 9). Specifically, a choice 
is provided to the user including the selection of the virtual environment and the operating mode. Three choices 
for the operating mode: 
 

● Build Mode to enter the Tutorial Creation Module and navigate in the selected virtual environment to 
record the steps for a certain procedure. 
 

● Train Mode to enter the Tutorial Execution Module and to get trained selecting one of the available 
(previously created) tutorials in the virtual environment. 
 

● Free Play Mode for both novice and experienced operators, who want to enter the selected virtual 
environment to get familiar with all the interactions that have been created. 

 
 
5.1  XR Tutorial Creation Module 

 
The XR tutorial creation module allows to create a training tutorial in order to educate inexperienced operators 
on the use of machines or industrial control panels in simple or more complex scenarios, avoiding dangers and 
risks inherent during the real (physical) job assignments (Figure 10). It utilizes a set of XR tools designed to simplify 

 
45 XR interaction toolkit 1.0.0. Available at: https://docs.unity3d. com/Packages/com.unity.xr.interaction.toolkit@1.0/manual/index.html 

Figure 9: CPSoSAware XR tutorial framework. 
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the process of creating or editing training tutorials. The XR tutorial creation module is initiated by first loading a 
previously designed 3D workplace of interest. Depending on the device the user can interact with objects of the 
environment using his bare hands or the controllers. The implementation is based on the sematic layer including 
the machine components, the trackable components and the tutorial manager, which are described in Section 4. 
Every 3D interaction is tracked automatically and marked as a new step of the training tutorial. If the user makes 
a mistake through the process, he/she can delete the tracked step through the 2D panel appearing in front of 
him/her. When all the steps are completed, the user presses the (virtual) save button, and the Tutorial Manager 
encodes the tutorial in a JSON formatted file. 
 

 
Figure 10: 2D Visualization Panel of the Tutorial Manager during tutorial creation. 

 
 

5.2  XR Tutorial Execution Module 
 

The XR tutorial execution module allows to rollout previously developed training programs, i.e., JSON encoded 
tutorials for learning and self-evaluation. The module includes the same components with the XR tutorial creation 
module, i.e., interactable components, machine components, trackable components, and a Tutorial Manager, 
although their utilization is different. The Tutorial Manager operates as an intermediate control mechanism for 
both modules. The machine, after receiving a request from an interactable component and validating it, 
communicates with the Tutorial Manager and sends the interaction data instance. While the role of the Tutorial 
Manager in the tutorial creation module was to hold every new valid interaction data, in this module the Tutorial 
Manager first loads the tutorial steps from a JSON file, and then, when receiving a new interaction data instance, 
compares the instance variables and notifies the user if the respective tutorial step was performed correctly.  
 
The identification of a step as correct is based on the common information shared between the machine 
component and the tutorial manager. This information is practically a struct containing four elements: the 
machine UUID (Universally Unique IDentifier), the interactable UUID, the tutorial command and the command 
state. The first three elements are unique in determining the action. The command state is the result of the 
interaction which is passed from the interactable to its parent machine. It can be a button press (resulting in a 
Boolean state) or a lever rotation (which produces a continuous output). The machine component encodes this 
information, based on the rules specified by the developer, into the state it is programmed to. The interactions 
currently supported by the framework are simple and can result in categorical states with two or more categories 
or continuous-valued states (e.g., rotation angle of a handle). The latter are quantized into discrete values to 
facilitate the state check (by the tutorial manager), which obviously is ensured only within the level of quantization 
precision.  
 
 A 2D visualization panel projected in the users’ front view is also utilized here to guide the trainee through the 
process by illustrating the sequence of performed and required actions and by displaying his/her performance 
after each execution task (Figure 11). The user gets notified through the panel so that he/she can proceed to the 
next step.  
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Figure 11: 2D Visualization Panel of the Tutorial Manager during tutorial execution. 

 
Moreover, to facilitate novice trainees, several types of indications are available in this module; i.e., every 
interaction is visualized on the (unfamiliar) machine by highlights in non-moving parts and animation in dynamic 
parts (Figure 12). These ghost animations are created through a dynamic copy of the game-object’s 3D mesh and 
recreate the motion which is required to reach the target state. In this way the trainee can easily recognize the 
position of the interactive components and the type of anticipated interaction. The amount of users’ guidance 
through visual hints is determined through the selection of the “difficulty” level that is performed at the start of 
the XR tutorial execution module through a user interface.  

 
 
In addition the user/operator can select if he/she wants to execute the tutorial with the illustration of the safety 
zones and collision risk factor, as explained next. 
 
 

5.3  Visualization of safety zones and collision risk in space 
 

Visualization of the simulated environment and rendering of the safety zones is performed with the Unity 3D game 
engine. For the visualization in the virtual world, Oculus Rift head-mounted display is employed, while the 
navigation of the user around the environment and the interaction with objects is rendered possible fusing the 
Oculus controllers. In AR, Hololens 2 equipment is utilized. Details on the calculation of the occupancy mapping 
and human-robot collision risk in the volumetric space are provided in deliverable D3.4. Here we have integrated 
the calculated collision risk in the XR tutorial execution module, for scenarios when the user wants to get trained 
having also an overview of the safety zones (Figure 16). 

Figure 12: The main menu of the XR training framework toolkit. 
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Figure 13: Example of safety zones and collision risk in space. 
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6 Application of the XR-based Lifelong Learning Tools in the Manufacturing Pillar 
 

In this section we will describe and evaluate the selected use case for our XR framework. The training scenario 
describes the steps required for the operation of an industrial windshield assembly task. The training tutorial 
includes actions for safety assurance for the machine and the worker, as well as operation instructions of drilling 
a hole in an object of a certain material. It consists of the following steps: 
 

Collaborative windshield assembly main expected phases 
 ROBOT OPERATOR 

1 Picks up one windshield and goes to an interactive position 
for the visual check Other operations on the workcell 

2 Goes to the assembly position (defined by anthropometric 
adaptation) Goes to logistics containers 

3 
Stationary position in golden zone with assembly phases of 
two sensors, the rearview mirror and a cable set 

Picks up the first towel and sensor 
4 Performs the assembly 
5 Goes to logistics containers 
6 Cyclic repetition (to completed assembly number 3 to 5) 

7 Stationary position in golden zone Releases the robot and exits the 
interactive zone 

8 Assembles the windshield to the chassis Performs other operations on the 
workcell 

 
During all above operations the operator is capable to interact with the robot only from the front part of the 
windshield or from the gripper itself.   
 

 

    
Figure 12: Some of the steps followed in the tutorial execution mode alongside with the animation and highlight indications. 

 
 

 
XR training framework - Build mode 
  
The following Figure 15 shows some screenshots of the XR training framework toolkit, when it is used during the 
build mode for the creation of a training tutorial, presenting the navigation of the user in the selected virtual 
environment to record the steps for a certain procedure. 
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XR training framework - Train mode  
 
The following Figure 15 shows screenshots of the XR training framework, when it is used under the train mode, 
presenting how the trained operator utilize the simulator by selecting one of the available (previously created) 
tutorials in the virtual environment. 
 

 
 

Figure 14: Screenshots of the XR training framework during the build mode. 
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Figure 15: Screenshots of the XR training framework during the train mode. 

 
Visualization of the collision risk factor 
 
For the calculation and the rendering of the dangerous areas around a robotic arm, the information regarding the 
possible locations that the robot can occupy has to be estimated and stored. This type of information is accordingly 
used to define the collision risk factor. In D3.4, we present in more detail three ways for the calculation of the 
collision risk factor that are based on the increasing level of available information. For the sake of completeness, 
we present here examples (Figure 16) of the visualization of the collision risk factor throughout the simulation of 
the CPSoSAware XR training framework. 
 
The simplest approach for occupancy risk prediction is to consider all possible positions in which the robot can lie 
at any time. The exhaustive scanning of all possible configurations is performed by recursively applying a step 
modification to each joint’s value and calculating the position of all components at each iteration. To further 
improve the short-term prediction, we take into account (in addition to the robot’s pose) also the angular velocity 
of each robotic joint at each time point. This provides a state-aware collision risk with directionality, obtained by 
penalizing changes in the rotation of the robotic joints and thereby improving estimation in the immediate future. 
The visualization allows the operators to be informed about the coming dangerous areas around them. In the 
dynamic area rendering, when considering the fog particle system, we also provided a top view of the safety 
zones, which are rendered on the board, as shown in Figure 16. 
 

   
 

Figure 16: Example of the visualization of the collision risk factor. 
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7 AR–based CPHS User Training Toolkit for the Automotive Pillar 
 

7.1 Interface Design 
 
Modern augmented and virtual reality (AR/VR) technologies open multiple new capabilities in the way people 
interact, collaborate and deliver or receive information via digital interfaces. Drivers of autonomous or semi-
autonomous vehicles, in cooperative driving scenarios, may especially benefit from such solutions that allow them 
to get trained and be familiarized, using digital copies of the environment simulating realistic traffic scenarios.  
 
The CPSoSAware driving simulator provides advanced interfaces, in order to support drivers of mixed traffic 
environments, while their situational awareness enhancement is further empowered by advanced VR and AR-
based lifelong learning tools.  The virtual reality tools provide the necessary framework for more experienced 
workers to create a VR tutorial and load it into the application.  In this section, we will describe how the driving 
simulator that has been developed by UPAT will be used for training and familiarization of the users with the AR 
technologies used for the visualization of visual augment content while they are driving (more details about the 
visualization part of the simulator are presented in D3.4).  The simulator is able to provide different types of visual 
information in virtual reality for situational awareness of the driver (Figure 17). 
 

 
Figure 17: Steering wheel chair. 

 
Two setups for the visualization of the AR content are available, using:  

• A VR display device with leap motion sensor, Figure 18 (a) 
• A monitor screen, Figure 18 (b) 

        
                                                         (a)                                                                                 (b) 

                       Figure 18: Two set ups of display options. 

The former  increases the feeling of immersion while the latter can be used in combination with a capturing system 
(camera) in order to register and evaluate the drivers' reactions, their responses to warnings and visual content, 
gaze activity, the response time between finding the displayed information with their eyes and the final reaction, 
etc.  
  
The objective of this task is to allow users to:  

1. Learn and become more familiar with new AR visual hints. 
2. Get trained to be aware of virtual signs in different traffic conditions (Figure 19-Figure 21) 
3. Personalize the design of the visual information by choosing the preferable type of visualization. 
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4. Evaluate the efficiency, benefit and acceptability of different types of visual warnings 
 

 
Figure 19: Example of the simulator in a mixed traffic urban environment. 

 

 
Figure 20: Pedestrians and electrical scooters are also available. 

 

 
Figure 21: Example of the simulator in an open road rural environment with less traffic. 

 
The AR content is provided in 6 different types, which are shortly described below: 
 

• Arrow. This visualization method involves a stick and an arrow tip. Each 3D Arrow’s direction follows the 
paired object's position and the length of the stick is linearly scaled as a function of the correspondent 
distance.  

• 3D Minimap. This method is composed of three layers of concentric spheres, providing an estimation of 
the object’s distance from the vehicle’s position.  

• Radar. In this method, the objects are represented as small squares in a radar-like area.  
• Wedge 3D. This method is based on rendering objects in a form of a pyramid-like scheme. The height of 

the pyramid is linearly scaled w.r.t the distance between the user’s vehicle reference and the object. 
• Occluded Meshes As is. This visualization method presents the occluded information at the appropriate 

distance by transparently rendering the object's silhouette. 
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• Meshes Sphere. Similar to the previous method, however, the occluded objects are represented by 
spheres. 

 
Moreover, all these visualization methods (except from the method using 3D meshes "as is") use different colours 
to represent different categories of objects. For example, pedestrians are represented in red, vehicles are 
represented in cyan and electrical scooters in yellow (Figure 22). 
 

 
Figure 22: Example of the color annotation. 

 
In the following figure, we present an example using the arrow visualization method. In Figure 23 (a), the direction, 
distance (based on the length of the arrow's stick body) and category (based on the arrow's colour) of some 
occluded objects are presented. In Figure 23 (b), the pedestrian is now visible so the red arrow disappears, the 
same in Figure 23 (c), where the electrical scooter appears and the yellow arrow disappears and finally, in Figure 
23 (d) there are no occluded objects. 
 

 
                                              (a)                                                                                                      (b)                                                     

 
                                              (c)                                                                                                      (d)                                                     
Figure 23: Arrow visualization method presenting (a) three different categories of occluded objects (i.e., red, cyan and yellow arrows), (b) 
two categories of occluded objects, (c) one category of occluded objects, (d) everything is visible to the driver. 

 
 

7.2 User Evaluation Study  
 
For this task, 12 adult attendees participate in the experimental process (4 females and 8 males). Most of them 
are employees or students of different levels (master, PhD, etc) of the University of Patras. The mean age is 27.5 
years and the range is between 23 and 45. 
 
The experimental process takes place in two parts. In the first part, the attendees became familiar with the 
simulator. They do not follow any specific instructions or have any time constraints. They freely drive in any 
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direction they want and for any time duration they feel comfortable. In this part, the simulated vehicles follow 
the driving rules and they are safely moving on the road. The attendees are able to use all of the provided 
visualization methods during their exploration of the environment of the simulator. 
 
In the second part, the attendees have to follow a specific route in which they will face some road danger 
situations that have been pre-defined based on the scenario. They will utilize all the different visualization 
methods as a help to increase their situational awareness. Spatial indicators show the correct path that has to be 
followed. In this part, more aggressive behaviour of the simulated driving styles is apparent, and there are more 
road dangers (e.g., pedestrians and electrical scooters suddenly jump in the middle of the road). 
 
Finally, the attendees have to evaluate if the provided information via the visualization techniques satisfies their 
personal expectations and increases the feeling of trustworthiness and acceptance, and finally if the information 
is understandable and non-distractive. For this purpose, a questionnaire is provided after the end of the 
experimental process. The form of the questionnaire is presented in Appendix Α. 
 
 
Below, we present the results of the questionnaires. 

 

 

 

12 answers 

12 answers 
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To summarize, the conclusions of this analysis are presented below. 
 

• Most of the attendees mostly use that kind of application related to social media. On the other hand, they 
use more infrequently applications related to safety and wellbeing. 

• Most of them (75%) have used an augmented reality device, tool or application in the past, and all of them 
(100%) have already used a virtual reality device, tool or application. 

• Most of the attendees (83.3%) agree that learning to use the driving simulator would be easy for them, 
and all of them agree that the interaction with the simulator was easy and they believe that could become 
skillful at using this tool. 

• All of the attendees agree that using the proposed visualization system would enable them to drive more 
safely and be aware of critical upcoming events and additionally that they find this tool useful when they 
have to drive in a non-familiar mixed traffic environment (including vehicles, road users, bicyclists, etc). 
Moreover, most of the attendees are positive (83.3%) to use the proposed visualization system to make 
them feel less nervous about driving in an unknown area. 

• All of the attendees are positive (66.7% extremely agree and 33.3% slightly agree) to use this application 
in order to drive more safely and securely.  

• Almost all of them (11 of 12) are aware of VR/AR training tools and all of them (100%) are interested in 
using VR/AR technology as a training or learning tool. 

• Regarding the visualization methods, attendees provide a big range of different personalized preferences. 

12 answers 
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However, the most popular method is the presentation of the occluded objects as transparent meshes 
displaying their silhouette as they actually are (83.3% with 5 to 5), and the less popular is the minimaps 
(50% with less than 3 to 5). 
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8 Conclusions 
 
The work within Task 5.3 is aligned with the work in WP5 “CPSoSaware Integration and Cross-layer Optimization 
supporting design-operation continuum”.  In this deliverable we presented a knowledge sharing platform and a 
XR-based toolkit for the development and the subsequent rollout of new training programs in VR. Extended reality 
training allows to fully experience and iterate on a virtual task before committing to the physical workplace, thus 
alleviating resources and ensuring a safe environment, both for trainees and equipment. Moreover, virtual 
interactions facilitate the granular adjustment of conditions based on personalized preferences and needs and 
can also become a valuable means of data gathering for ergonomic assessment and user-centered design (linked 
with WP2, WP3). However, the development of XR platforms that can support all different aspects of industrial 
training within a single system is extremely challenging. In this deliverable we presented (i) an XR-based platform 
for lifelong learning that can help a worker adapt to changes in the industrial environment through corresponding 
ICT-empowered training processes. These tools consist of components that support the creation and execution of 
a tutorial process in virtual environments. The software implementation was performed in the Unity3D real time 
development platform, so the tutorial environment can be encoded in Unity Asset Bundles which are archive files 
that contain platform specific assets (such as models, textures, audio clips) that can be loaded by Unity at run 
time. (ii) Moreover, we have developed an AR-based user training toolkit for the automotive pillar, that includes 
simulation of driving in a virtual city while receiving notifications of potential dangers, increasing situational 
awareness. A small user study allowed to assess technology acceptance and perceived usefulness exposing the 
efficacy and potential of the developed AR–based CPHS user training toolkit. 
 
The XR training toolkit that has been developed is also used in D3.4 for the pose recognition analysis and the 
visualization techniques for the situational awareness of the operators (manufacturing pillar). Additionally, the 
usability of the driving simulator is discussed in more detail in D3.4 (automotive pillar). 
 
  



D5.3 AR based life long learning tools 

 

Page 39 of 45  

Appendix A 
 

SURVEYS Acceptance Study-AR/VR tools 
The aim of the present survey is to assess the acceptability and usefulness of developed technological solutions 
for you as an operator, aiming at your health and well being, as well as promotion of your training and 
collaboration.  

Short videos will also be presented to you to better understand the technological solutions. This survey is 
focused on the following tool:  

-The Virtual Reality/Augmented Reality tools  

 
* It is required 

 

PERSONAL INFORMATION 

1. GENDER * 

Female 

Male 

2. AGE * 

 
 
 

3. HIGHEST LEVEL OF EDUCATION YOU HAVE COMPLETED * 
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FREQUENCY IN TECHNOLOGY USE 

4. What kind of apps do you use more frequently? * 

 

5. If you use other kind of apps, please indicate here 

 

6. Have you ever used Augmented Reality devices or tools? * 

Never 

Sometimes 

Usually 

 

 

7. Have you ever used Virtual Reality devices or tools? * 

Never 

Sometimes 

Usually 

 

 

 

 

Set up of the wheeling chair and the AR display device 
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TECHOLOGY ACCEPTANCE 
Please indicate your level of agreement with the following statements. 
8. Perceived Ease of use Questions (PEU) * 

 

9. Perceived Usefulness Questions (PU) * 
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10. Behavioural Intention to Use (BI) * 

 

11. Are you aware of VR/AR training tools? * 

Yes, I know 

Have heard before 

No 

12. You would be interested in using VR/AR as a training/learning tool? * 

No 

Yes 

13. Would you think that the VR/AR tools could help you to drive more safe and being well aware 
about the surrounding traffic environment? * 

         

 
 

 
 

 
 
 

 
 

  
 

 
 

 

  
 
 

 

  
 
 

 
 

 

  

 
 

 
 

 
 
 

 
 

  
 
 



D5.3 AR based life long learning tools 

 

Page 43 of 45  

I will definitely be engaged in such tools 

They sound appealing to me 

I prefer the traditional training methods 

I would not like to try them 

Display Techniques 
Please evaluate your preference to the following display techniques (1 non satisfying - 5 very satisfying) 

 
14. Arrows 3D * 

 
 1 2 3 4 5 

 

15. Minimap * 

 
 1 2 3 4 5 

 

16. Radar * 

 
 1 2 3 4 5 

 
 
 
 

17. Wedge 3D * 

 
 1 2 3 4 5 
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18. Meshes As is * 

 
 1 2 3 4 5 

 

19. Meshes Spheres * 

 
 1 2 3 4 5 

 

PRIVACY AND SECURITY QUESTIONNAIRE 
Der Fragebogen zu Datenschutz und Sicherheit basiert auf einer gründlichen Untersuchung relevanter Fragebögen/ Umfragen:   Chignell, 
M., Gwizdka, J., & Quan-Haase, A. (2003). Der Fragebogen zur Einstellung zum Datenschutz (PAQ) und die Internetnutzung. In AoIR 2003 
Annual Conference (S. 16-19). https://www.cc.gatech.edu/gvu/user_surveys/survey-1998-10/questions/privacy.html 

 
20. Security System * 

 

 

  

          

 
 

 
 

 
 

 
 

  
 

 
 

 
 

 

  
 

 
 

 
 

 
 


