

D5.4 FINAL VERSION OF CPSOSAWARE INTEGRATED PLATFORM

Authors

Pavlos Kosmides, Christina Michailidou (CTL), Konstantina Papachristopoulou
(8Bells), Antonio Alvarez Romero, Miguel Martin Perez (ATOS), Pekka Jääskeläinen
(TAU), Gerasimos Arvanitis (UPAT), Jordi Casademont, Javier Fernandez (i2CAT),
UoP, Nikos Piperigkos, Christos Anagnostopoulos, Aris Lalos (ISI), Wojciech
Jaworski (RTC), (IBM)

Work Package WP5 – CPSoSaware Integration and Cross-layer Optimization supporting design-op-
eration continuum

 Abstract

This document presents the updated and final report on CPSoSaware components
and their integrations with respect to the demonstrator scenarios of the use
cases. It presents how each component serves the purpose of the demonstrator
along with the required interactions with other components in terms of integra-
tions interfaces, APIs and data structures that are exchanged.

Funded by the Horizon 2020 Framework Programme

of the European Union

Ref. Ares(2023)406313 - 19/01/2023

Final Version of CPSoSaware integrated platform

1

Deliverable Information

Work Package
 WP5 CPSoSAWARE Integration and Cross-layer Optimization supporting design-oper-
ation continuum

Task
T5.2 Integration, Cross-level Optimizations for CPSoS Maintenance and CPSoS
lifecycle Design Operation Continuum

Deliverable title D5.4 Final Version of CPSoSAWARE Integrated Platform

Dissemination Level PU

Status F: Final

Version Number 1.00

Due date M36

Project Information

Project start and dura-
tion

01/01/2020 – 31/12/2022, 36 months

Project Coordinator Industrial Systems Institute, ATHENA Research and Innovation Center
26504, Rio-Patras, Greece

Partners 1. ATHINA-EREVNITIKO KENTRO KAINOTOMIAS STIS TECHNOLOGIES TIS PLIROFORIAS,
TON EPIKOINONION KAI TIS GNOSIS (ISI)
 the Coordinator
2. FUNDACIO PRIVADA I2CAT, INTERNET I INNOVACIO DIGITAL A CATALUNYA (I2CAT),
3. IBM ISRAEL - SCIENCE AND TECHNOLOGY LTD (IBM ISRAEL
4. ATOS SPAIN SA (ATOS),
5. PANASONIC AUTOMOTIVE SYSTEMS EUROPE GMBH (PASEU)
6. EIGHT BELLS LTD (8BELLS)
7. UNIVERSITA DELLA SVIZZERA ITALIANA (USI),
8. TAMPEREEN KORKEAKOULUSAATIO SR (TAU)
9. UNIVERSITY OF PELOPONNESE (UoP)
10. CATALINK LIMITED (CATALINK)
11. ROBOTEC.AI SPOLKA Z OGRANICZONA ODPOWIEDZIALNOSCIA (RTC)
12. CENTRO RICERCHE FIAT SCPA (CRF)
13. PANEPISTIMIO PATRON (UPAT)

Website www.CPSoSAWARE.eu

Final Version of CPSoSaware integrated platform

2

Control Sheet

VERSION DATE SUMMARY OF CHANGES AUTHOR

0.1 01/11/2022 Structure UOP

0.5 15/12/2022 First Round of Contributions All

0.8 24/12/2022 Final Round of Contributions All

0.9 12/01/2023 Review of Del. Completed IBM, I2CAT

1.0 18/01/2023 Final version of the Del. UoP

 NAME

Prepared by UOP

Reviewed by IBM, I2CAT

Authorised by ISI

DATE RECIPIENT

12/01/2023 Project Consotium

19/01/2023 European Commission

Final Version of CPSoSaware integrated platform

3

Table of contents

Figures ... 5

1 Introduction ... 12

2 Architecture ... 14

3 Integration & Deployment Framework ... 19

4 Core Technology Component ... 21

4.1 Distributed and Reliable Edge Execution Environment Technology Demos 21

4.1.1 Portable Hardware Acceleration Abstraction .. 22

4.1.2 The Demonstrator Application .. 25

4.1.3 Latency Lowering with Command Buffering ... 26

4.1.4 Multi-Device Edge Scalability for PoCL-R via RDMA .. 27

4.1.5 Reliability via Redundant Command Queue Execution ... 30

4.1.6 Nano-PoCL: Edge OpenCL Client for Near-Sensor Offloading ... 36

5 Connected and Autonomous Vehicles .. 40

5.1 Cooperative awareness .. 41

5.1.1 Co – Operative localisation with dynamic agents (Simulation Based) 41

5.1.2 Co – Operative localisation with static agents .. 45

5.2 V2X communications Simulation Environment ... 56

5.2.1 Interface connection from V2X communications simulation environment to storage service
 56

5.2.2 Interface connection from V2X communications simulation environment to ISI location
improvement simulator .. 59

5.3 Real Vehicle Environment .. 61

Final Version of CPSoSaware integrated platform

4

5.4 Cybersecurity in connected vehicles ... 62

5.4.1 Sensor Layer ... 63

5.4.2 Communication Layer .. 65

5.4.3 Security runtime and monitoring management .. 67

5.5 Human in the loop system ... 74

5.5.1 Integration Environment .. 74

5.5.2 Runtime evaluation .. 75

5.5.3 Multi HW Implementation Platforms .. 78

6 Human-Robot Interaction in Manufacturing Environment .. 87

6.1 ROS communication ... 89

6.2 XR Training: Tools and system architecture ... 92

6.2.1 Hololens 2 ... 93

6.2.2 Unity editor .. 96

6.2.3 ROS connector .. 98

6.2.4 Application and test ... 101

6.3 Anthropometric Recognition ... 106

6.4 Backend for processing outputs of different cameras to increase robustness of the scene analysis
 109

6.5 Operator State Monitoring .. 110

6.5.1 OSM Android Application .. 110

7 Conclusions .. 114

8 References ... 115

Final Version of CPSoSaware integrated platform

5

Figures

Figure 1: CPSoSAWARE Layers ... 14

Figure 2: CPSoS layer and sub-blocks ... 15

Figure 3: CPS/CPHS layer and sub-blocks ... 16

Figure 4: Simulation and Training layer and sub-blocks .. 17

Figure 5: Overview of system interfaces .. 18

Figure 6: CPSoSAWARE CI/CD workflow .. 19

Figure 7: Task graph lowering by OpenVX. The OpenVX implementation queries the available devices for
built-in kernel implementations and lowers the task graph to an OpenCL task graph described with kernels
and event dependencies. ... 23

Figure 8: Object detection demonstration setup. The user program defines the application in standard
OpenVX and TVM library calls, which internally share the OpenCL context with each other. 24

Figure 9: Left: pixels that are detected as skin coloured highlighted in red, edges are highlighted turquoise.
Right: original input image. .. 26

Figure 10: With TCP sockets, individual parts of messages have to be sent separately and long messages
may need to be split up into multiple write calls to the networking driver. ... 28

Figure 11: RDMA allows sending arbitrarily long chains of messages in a single call to the driver. 28

Figure 12: Performance improvement in server-to-server buffer transfers when RDMA is used instead of
TCP .. 29

Figure 13: Performance improvement in naïve matrix multiplication when server-to-server buffer transfers
are handled with RDMA instead of TCP ... 30

Figure 14: Block diagram of different IPs. In the center is IP that provides the voter kernel functionality. Not
shown is the control IP ... 32

Figure 15: Example of the pipelining in action, the voter IP can output results every cycle 33

Figure 16: input gray-scale image for the faulty device demonstrator ... 35

Figure 17: corrected resulting image. .. 35

Final Version of CPSoSaware integrated platform

6

Figure 18: Hardware layout of the Crazyflie nano drone. The STM32 chip is the main control unit of the
drone body. It communicates with the proprietary radio RTF chip via SPI and with the WiFi-enabled ESP32
on the AI Deck via UART. The main CPU of the AI Deck is the GAP8 that communicates with the ESP32 via
SPI. The ESP32 also routes messages between the STM32 and the GAP8 ... 36

Figure 19: Battery voltage over time during the run time of the demonstrator application. 38

Figure 20: Interaction surfaces ... 40

Figure 21: Submodules of the co - operative location with dynamic agents module 41

Figure 22: The block diagram of LME and SmaRt .. 47

Figure 23: The framework of an autonomous system. .. 47

Figure 24: Planning a global path for a test vehicle in Panasonic Automotive building to go to the Parking
area using Hybrid A* ... 48

Figure 25: Planning local path section to follow a global Path for a test vehicle in Panasonic building (Left)
and a Clothoid based parking maneuver from the parking area to the final target position (Right) 48

Figure 26: Avoiding a collision while following a path for a test vehicle ... 49

Figure 27: Illustration of the initial position, intermediate and goal positions as derived by the Path Planning
algorithms ... 50

Figure 28: Path Planning part of the cooperative awareness and output of the map registration and final
positions .. 50

Figure 29: Path Planning steps involved in state 6. ... 51

Figure 30: Odom-Fusion output running on DrivePX2. (a),(b): Depict the hardware setup and the
development environment. (c)-(h) Visual output of the odomFusion Running on Nvidia Drive PX2 55

Figure 31: Modules Integrated on CPSoSAWARE platforms. .. 61

Figure 32: Integration Platforms .. 62

Figure 33: Cybersecurity components and interactions .. 63

Figure 34: Phases of Cyber-attack detection, classification and mitigation for the automotive pilot 64

Figure 35: Perception Components involved in the cyber attacks of the automotive pilot 65

Final Version of CPSoSaware integrated platform

7

Figure 36: Architecture of the V2XCOM module ... 66

Figure 37 Security Event Format .. 68

Figure 38: Dashboard ... 69

Figure 39: List of alarms ... 70

Figure 40: Detail of an alarm .. 70

Figure 41: Alarm JSON format .. 71

Figure 42: Email notification .. 72

Figure 43: Action associated to an alarm ... 73

Figure 44: Rule configuration interface ... 73

Figure 45: Result of the “Eye closure” scenario. (b) Result of the “Yawning” scenario. (c) Result of
“Distraction” scenario. Source: Catalink .. 75

Figure 46: A schematic representation of a dashboard in an average car with phones’ positioning during
test drives. Source: Robotec.ai. .. 76

Figure 47: Multi HW implementation components ... 78

Figure 48: DSM components .. 80

Figure 49: Hololens representation of main information provided to the operator in case of training
 .. 88

Figure 50: Systems connected in the Manufacturing use-case ... 89

Figure 51: A view that focuses on the ROS interactions .. 90

Figure 52: Reality spectrum .. 93

Figure 53: Microsoft Hololens 2 ... 94

Figure 54: Microsoft Hololens 2: components .. 95

Figure 55: Unity editor ... 97

Figure 56: Hololens communication solutions .. 98

Final Version of CPSoSaware integrated platform

8

Figure 57: ROS – Unity Communication ... 99

Figure 58: Hololens communication – ROS solution ... 99

Figure 59: JSON message for subscribing (example) ... 100

Figure 60: Rosbridge implementation ... 101

Figure 61: Unity Editor – Ros Connector details .. 102

Figure 62: ROS Topic and Subscribers .. 104

Figure 63: Testing scenario for Unity-ROS communication ... 105

Figure 64: Configuration output: Ubuntu with ROS machine (left) and Unity Editor on Windows10 (right)
 .. 105

Figure 65: Details of rosbridge server output with subscribed client at topics (up) and example of publication
(buttom) .. 106

Figure 66: Architecture of the multi-stereo camera system. .. 107

Figure 67: Part of the used equipment. ... 107

Figure 68: Output of the integrated system. ... 110

Figure 69: ML kit face detection – Point of Mouth. ... 111

Figure 70: Mouth point utilized for calculating MAR ... 112

Figure 71: Workflow of the OSM Android Application .. 112

Figure 72: OSM Android Application result sent to dedicated API ... 113

Final Version of CPSoSaware integrated platform

9

Tables

Table 1: Odom Fusion Runtime Profile on (Dell Latitude E6540) .. 54

Table 2: Odom Fusion Runtime Profile on (on Nvidia Drive PX2) .. 55

Table 3: Odom Fusion Runtime Profile on (on TDA2x) .. 56

Table 4: Odom Fusion Runtime Profile on (on Raspberry Pi) .. 56

Table 5 Parameters stored in a “sent” file ... 57

Table 6 : Parameters stored in a “recieved” file. ... 57

Table 7: Parameters stored in the Local Dynamic Map (LDM) .. 60

Table 8: Attack scenarios for the real vehicle demo as presented in deliverable D6.2 [24] 63

Table 9 ROS exchanged messages in manufacturing use case .. 90

Table 10: ROS message based on the operator's height. .. 108

Table 11: ROS message based on the ergonomics state of the operator. .. 108

Final Version of CPSoSaware integrated platform

10

Definitions and acronyms

Acronym / Term Definition

AR Augmented Reality

ASIP Application-specific Instruction-set Processor

CL Cooperative Localization

CNN Convolutional Neural Network

CPS Cyber-Physical System

CPHS Cyber-Physical-Human System

CPSoS Cyber-Physical System of Systems

CSV Comma-separated Values

CSAIE Cognitive System AI Engine

DCNN Deep Convolutional Neural Network

DMS Driver Monitoring System

DoF Depth of Field

FPGA Field-Programmable Gate Array

HLS High-Level Synthesis

HW Hardware

LiDAR Light Detection And Ranging

MRE Modelling and Redesign Engine

MQTT Message Queuing Telemetry Transport

OWL Web Ontology Language

OSM Operator State Monitoring

PoCL Portable Computing Language

RDF Resource Description Framework

RDMA Remote Direct Memory Access

RTL Register Transfer Level

SAT Storage And Transformation

SCM Source Code Management

Final Version of CPSoSaware integrated platform

11

SHACL Shapes Constraint Language

SRMM Security Runtime Monitoring and Management

SW Software

TCE TTA-Based Co-design Environment

UML Unified Modeling Language

XR Extended Reality

XRT Xilinx Run-time

Final Version of CPSoSaware integrated platform

12

1 Introduction

Cyber-Physical Systems (CPSs) are designed using a model-based design approach, thus accurate model-
ling and simulation plays an important role in the design outcome. This approach is similar for Cyber-
Physical System of Systems (CPSoS) although we must consider the fact that CPSoS have a continuous
evolution that involve the continuous addition, removal, and modification of hardware and software CPS
components over the CPSoS complete life cycle. This poses a considerable CPSoS challenge since the
CPSoS design phase and operation phase are not separated but rather coexist through time thus forming
a design operation continuum that must be supported. This continuum leads to a need for System-wide
dynamic reconfigurability and adaptability of CPS resources and CPS process lifecycles. The CPSoS must
include a mechanism able to reconfigure its CPS components according to its evolving physical and cyber
environment, possibly commission new components or decommission/replace old ones. However, the
complexity and autonomy of the CPSoS makes it very hard to identify when a reconfiguration is needed,
thus highlighting the need for introducing CPSoS self-awareness through a CPSoS cognitive mechanism.
The cognitive CPSoS must be able to provide situational awareness in a decentralized manner (matching
the decentralized way CPS operate within the system) and aid both CPSoS operators and users in order to
reduce the complexity management burden. CPSoSAWARE architecture as already presented thoroughly
in the respective deliverable D1.4 [1], delivers these requirements through the tight integration of various
components that operates in the CPSoS System Layer and CPS/CPHS Layer.

In essence, CPSoSAWARE project’s main objectives are to deliver an architecture formed in a modular way
able to adapt to various scenarios and apply to all layers of data flows, from CPS and edge layer to cloud
system layer. In the context of the project, several components have been designed and implemented to
address challenges that are presented in two very demanding application domains, the automotive and
manufacturing. The evaluation of the CPSoSAWARE architecture will be performed through respective
demonstration scenarios as described thoroughly in D6.5 [2]. Since the operational environment of these
components span to all layers of the architecture, it is expected highly heterogeneity in terms of interfaces
and data structures introducing significant integration challenges.

Deliverable D5.4 is the final version of a series of 2 deliverables that describe the integration activities
performed in T5.2. T5.2 focuses on the integrations and cross level optimizations for CPSoS Maintenance
and CPSoS lifecycle design operation continuum. In this task, the various CPSoSAWARE blocks that provide
support for the CPSoS Design Operation Continuum are integrated. This action performs integration of
the Modelling and Redesign Engine (MRE), the Cognitive System AI Engine (CSAIE), the (Security Runtime
Monitoring and Management) SRMM and the Storage And Transformation (SAT) blocks of the CPSo-
SAWARE System Layer with the Cyber-Physical-Human System (CPHS) layer and the actual generation of
test vectors to be used for the validation of the Design Operation Continuum support mechanism. In this
task, the evaluation process that is going to be conducted on the tow use cases in WP6 will be used as
feedback in order to provide optimization to the cross – layer integrated components. The evaluation
process is meant to highlight possible Requirements KPI misalignments due to integration of the various
CPSoSAWARE blocks and components and provide possible solutions to mitigate the risk. The cross-layer
communication will be optimized in order to support the required Key Performance Indicators (KPI) , thus

Final Version of CPSoSaware integrated platform

13

focusing on providing fast response time and small communication latency. The evaluation process will
also be extended to the level of provided security in the Design Operation Continuum Support Mecha-
nism. The task is associated with all WP5 and WP4 tasks and the evaluation process of WP6.

This deliverable presents the final integration designs and implementations of the CPSoSAWARE compo-
nents with regards to the two CPSoSAWARE application domain pillars and their demonstrators.

Section 2 summarizes the architecture of the CPSoSAWARE project and presents the main interactions
between the components along with their interfaces. Section 3 presents the approach followed to auto-
mate and support the software integration development. Section 4 presents the core technology compo-
nents that were developed in CPSoSAWARE and can be applied to both use cases. Finally, Section 0 is
dedicated on presenting the components integrations that will serve the demonstrations for each use
case.

Final Version of CPSoSaware integrated platform

14

2 Architecture

CPSoSAWARE system, as of the latest version of the system architecture, consists of 3 main layers. 1)CPSoS
System Layer, 2) CPS/CPHS Layer, 3) Simulation and Training Layer (Figure 1). The distribution of the tech-
nical components of these layers is presented from Figure 2 to Figure 4. T5.2 is strongly related to T1.3
where the dependencies, interactions and finally interfaces of the various components have been de-
tected. These interactions are depicted in Figure 5. More insights and details on the description/specifi-
cations of the system architecture and components is given in “D1.4: Second Version of CPSoSAWARE
System Architecture” from which these figures where excerpted [1].

Figure 1: CPSoSAWARE Layers

Moreover, the outcome of these integration activities as performed in T5.2 and reported in the two re-
spective deliverables will be realized in WP6 for the execution of the pilots. During the initial phases of
the CPSoSAWARE project, two use cases have been defined and described in detail. In this definition
phase, the use cases are outlined, and the main components have been identified. These developments
are to be integrated on the two pilot demonstrators and tested/validated in specific testing scenarios as
reported in D6.4 [3].

Final Version of CPSoSaware integrated platform

15

Figure 2: CPSoS layer and sub-blocks

Final Version of CPSoSaware integrated platform

16

Figure 3: CPS/CPHS layer and sub-blocks

Final Version of CPSoSaware integrated platform

17

Figure 4: Simulation and Training layer and sub-blocks

Final Version of CPSoSaware integrated platform

18

Figure 5: Overview of system interfaces

Final Version of CPSoSaware integrated platform

19

3 Integration & Deployment Framework

To facilitate a more formal and automated way to perform integration testing and deployment, CPSo-
SAWARE adopted the use of Continuous Integration / Continuous Deployment automation servers. In
CPSoSAWARE, automations on integration testing where these are applicable, are based on Jenkins [4],
an open source and free software that implements an automation server. It helps automate the parts of
software development related to building, testing, and deploying, facilitating continuous integration and
continuous deployment. It is a server-based system that runs in servlet containers such as Apache Tomcat
and it supports several version control tools (e.g. CVS [5], Subversion [6], Git [7], Mercurial [8], etc.) and
can execute various build tools commands as well as arbitrary shell scripts and Windows batch commands.

Figure 6: CPSoSAWARE CI/CD workflow

The workflow proposed in the CPSoSAWARE project is presented in Figure 6. This workflow is designed
based on Jenkins Pipelines [9] and there will be configured with a source code management (SCM) polling
trigger.

The SCM system adopted by the CPSoSAWARE is Git. Git is a distributed version-control system for track-
ing changes in any set of files, originally designed for coordinating work among programmers cooperating
on source code during software development. Its design goals include speed, data integrity, and support
for distributed, non-linear workflows (thousands of parallel branches running on different systems).

Jenkins Pipeline is a suite of plugins which supports implementing and integrating continuous delivery
pipelines into Jenkins. A continuous delivery (CD) pipeline is an automated expression of your process for
getting software from version control right through to the users. Every change to the software (committed

Final Version of CPSoSaware integrated platform

20

in source control) goes through a complex process on its way to being released. This process involves
building the software in a reliable and repeatable manner, as well as progressing the built software (called
a "build") through multiple stages of testing and deployment. Pipeline provides an extensible set of tools
for modeling simple-to-complex delivery pipelines "as code" via the Pipeline domain-specific language
(DSL) syntax. The definition of a Jenkins Pipeline is written into a text file (called a Jenkinsfile) which in
turn can be committed to a project’s source control repository. This is the foundation of "Pipeline-as-
code"; treating the CD pipeline a part of the application to be versioned and reviewed like any other code.

As already imposed, all the involved components in the CPSoSAWARE platform will be version controlled
and stored in Git Repositories. These components will be:

• Functional/non-Functional requirements
• Simulation suite code
• Components configurations (raspberry, FPGA, etc.)
• Components codes:

o Bitstreams codes
o Service codes
o Scripts

• Test automation scripts: The testing scripts will verify that the configurations are
applied/deployed successfully in the components and there is communication between them.

Also, a binary repository manager (also known as artifactory) will be configured to store 3rd party libraries
and/or the outcome of the build process. This repository will store binaries such as:

• Customized OS images
• FPGA bitstreams
• Simulation suite binaries

It must be noted, CPSoSAWARE components present a heterogeneity that does not allow in the context
of the project, to configure pipelines where end – to – end workflows will be able to be automated through
the CI/CD automation server. However, individual integration paths have been already tested through
Jenkins pipelines while automated deployment/commissioning tasks are to be executed by Jenkins deliv-
ering the required functionality of the TC4.61 as described in D1.4 [1]. The details of the automation server
maintained from UOP along with the Storage And Transformation (SAT) engine developed from IBM that
is used for persisting configuration data and evaluation results, are detailed in more details in D4.4 [10].

Final Version of CPSoSaware integrated platform

21

4 Core Technology Component

Core technology components regard CPSoSaware components that were designed and developed without
being restricted to the two CPSoSaware use cases. Thus, they are demonstrated in separate scenarios that
serve as partial demonstrators for technologies that could be used in similar purposes in future implemen-
tation cases and are not tailored to a specific use case.

4.1 Distributed and Reliable Edge Execution Environment Technology Demos

In this section we describe technology demonstrators and baseline measurements of the CPSoSAWARE
components related to the distributed and reliable execution environment developed in the project. The
components were developed mostly within WP2 and WP3 contexts with the final optimization, technol-
ogy integration demonstration work and documenting done with the Task 5.2’s scope. These demonstra-
tors were done separately from the final demonstrators. The following components were tested in the
described tech demonstrators.

Pocl-remote (TC2.2.2): Scalable distributed OpenCL runtime layer with P2P event synchronisation capa-
bilities.

ML Hardware Accelerator IP Cores (TC2.3.1): FPGA-based IP core components (interfaces) focused on
Machine Learning / Deep Neuronal Networks (ML/DNN) computations. The IP cores are seamlessly inte-
grated in the Portable Computing Language (PoCL) based OpenCL run-time system.

PoCL-accel (TC3.2.1): A Generic OpenCL driver for PoCL to interface with custom devices (hardware accel-
erators) from the OpenCL API.

OpenASIP (TCE, openasip.org) Soft Cores (TC3.6.1): Customised processors designed using TTA-Based Co-
design Environment (TCE), an ope-source application-specific instruction set toolset based on the
Transport-Triggered Architecture (TTA). Various hardening features can be added via replication of func-
tionality and special instructions.

OpenCL Wrapper for Hardware IP Cores (TC4.1.1): OpenCL kernel description interface to associate Hard-
ware IP cores with the OpenCL models.

Profiling (TC4.1.2): Profiling for a highly heterogeneous platform consisting of multicore ARM processor,
ASIP processors as well as FPGA fixed logic IP. FPGA logic is a “morphable” computation resource without
predefined computational capabilities. All software nodes will be handled by PoCL remotely enabling dy-
namic remapping and re-scheduling opportunities.

In addition to these components, initial support for OpenVX programming was added to expand the work
started in WP3 with a domain specific programming layer, as planned. Also automated command queue
redundancy support via an FPGA-based voting mechanism which was started in WP3 was integrated to
functional demonstrators as described in the following text. Finally, a large part of the last months in the

Final Version of CPSoSaware integrated platform

22

project of TAU was spent on optimization different aspects of the execution environment. This was done,
for example, by participating in the standardization of OpenCL command buffer mechanism [11] in the
Khronos group to which TAU provided an example implementation of in the PoCL framework in addition
to various comments that helped shaped up the specification. The command buffering, after taking fully
into use is expected to dramatically lower the latency of remote offloaded task graphs in repeated execu-
tion.

There was also work on producing a pruned version of the PoCL-R client, named Nano-PoCL, which is a
runtime library meant to be serving a host program in low-end near-sensor devices such as distributed
camera processors in an intelligent car. In this case, we demonstrated the work by using a nano-drone
which has limited processing capabilities on board based on a SoC with a RISC-V CPU.

4.1.1 Portable Hardware Acceleration Abstraction

The built-in kernel mechanism that was initially reported in D3.2 [12] was developed further in the context
of this deliverable. To demonstrate the easy integration of the proposed built-in kernel registry abstrac-
tion to higher level programming models, a proof-of-concept OpenVX implementation was created on top
of the built-in kernel abstraction layer.

The OpenVX implementation lowers the program consisting of OpenVX nodes to an OpenCL task graph
composed of commands submitted to one or more command queues, which are then passed on to the
OpenCL implementation for execution. The OpenCL task graph can consist of both built-in and software
kernels, depending on what built-in kernels the device supports. The principle behind this lowering is
shown in Figure 7.

Final Version of CPSoSaware integrated platform

23

Figure 7: Task graph lowering by OpenVX. The OpenVX implementation queries the available devices for built-in
kernel implementations and lowers the task graph to an OpenCL task graph described with kernels and event

dependencies.

The built-in kernel abstraction makes it possible to have specialized versions of OpenVX specified nodes,
which allows for more specialization in the kernel, which can be utilized to increase the efficiency. The
specialization parameters are hardened in the built-in kernel specification. It is possible to add support
for other OpenVX datatypes and specializations inside the OpenVX implementation at the point when the
node is being lowered, and the built-in kernel is being chosen.

The same OpenCL platform can also be simultaneously targeted by other higher-level frameworks. To
demonstrate this, an example Python application was created, which uses both OpenVX and TVM APIs
which internally both utilize a common OpenCL context. This demonstrator is further described in a pub-
lication [13].

Final Version of CPSoSaware integrated platform

24

The application chosen for this technology demonstrator was an object detection network YOLOv3-tiny.
The network finds bounding boxes for objects in an image and classifies them to belong to a specific cat-
egory. The complete demonstration application also included an image preprocessing step to show how
the proposed abstraction enables efficiently adding pre- and postprocessing kernels to neural network-
based applications.

The pre-processing step was created as a OpenVX program. A minimal OpenVX implementation was cre-
ated that implements the API calls needed in the demonstrator. For this demonstrator, two new built-in
kernels for image pre-processing were added to the built-in kernel registry. The semantics of the built-in
kernels were chosen to be specialized versions of the OpenVX nodes.

TVM was used for the YOLOv3-tiny's neural network operations. There the convolution operations were
replaced with the built-in kernel pocl.dnn.conv.2d.nchw.f32. The built-in kernel abstraction enabled the
backend to convert the built-in kernel functions into calls to optimized DNN acceleration library cuDNN.

Figure 8: Object detection demonstration setup. The user program defines the application in standard OpenVX and
TVM library calls, which internally share the OpenCL context with each other.

The built-in kernel abstraction layer and its connection to the AlmaIF FPGA abstraction that was started
in WP2 and initially reported in D2.3 [14] is published as open-source1 to create a common vendor-inde-
pendent portability layer for both software and hardware developers.

1 http://code.portablecl.org/

Final Version of CPSoSaware integrated platform

25

4.1.2 The Demonstrator Application

The demonstrator application was chosen to be a representative workload that utilizes algorithms in clas-
sical computer vision. For this, we adapted a Khronos sample project using the OpenVX API2. The sample
project demonstrates an OpenVX pipeline for detecting pixels that are potentially human skin and one
that implements the Canny edge detection algorithm. These are then combined with some application
provided OpenVX nodes to create a live application that allows a user to “pop” virtual bubbles with their
hand by detecting the hand position from an image or live video feed.

Since support for application-provided nodes is not relevant to our current work, so instead of the bubble
popping application, we simply combined the skin tone and edge detector pipelines and displayed their
combined results as is.

The skin tone detector splits the image in red, green and blue channels and applies a threshold to each
channel separately. The thresholded boolean images are then combined with a series of logic operations
to produce a binary estimate of whether each pixel is skin coloured or not.

The edge detector part converts the input image into YUV colour, splits out the luma channel and applies
a Canny edge detection filter to it. The single-channel results from both parts are combined into a new
RGB image with the binary skin colour mask in the red channel and the edge mask in the red and blue
channels.

2 https://github.com/KhronosGroup/openvx-samples

Final Version of CPSoSaware integrated platform

26

Figure 9: Left: pixels that are detected as skin coloured highlighted in red, edges are highlighted turquoise. Right:
original input image.

4.1.3 Latency Lowering with Command Buffering

The latency of the application was improved with the provisional command buffer extension of OpenCL
which allows recording command sequences and repeatedly launching them. Commands within a com-
mand buffer are synchronized with a mechanism that is separate from the events that is used with com-
mands outside a buffer. This gives implementations more freedom to optimize execution within a buffer.
Since command arguments are validated at the time of recording a command to a buffer, such checks can
be omitted when enqueuing the buffer to a command queue for execution. For synchronizing with other
OpenCL commands, enqueuing a command buffer yields an event representing completion of the rec-
orded command sequence as a whole. Events yielded by prior commands can also be given as dependen-
cies that have to complete before any of the recorded commands can be started.

For the purposes of command buffers, PoCL is split into two parts: the API layer, that provides the OpenCL
functions to applications and the backend layer that contains a variety of implementations of the actual
computing facilities such as (but not limited to) one built on LLVM and CPU threads, one that translates
OpenCL commands to CUDA and one that forwards commands to a different machine (PoCL-Remote). In
our proof-of-concept implementation, all command buffer logic is implemented in the API layer, making
it usable with any backend without the backends having to even be aware of command buffers.

For the traditional style of immediately enqueuing commands the API layer validates command parame-
ters and constructs a data structure describing the command corresponding to the OpenCL functions that
the linked application calls. These structures are then passed on to the backend implementation that cor-
responds to the OpenCL device associated with the command queue that the command is being enqueued
to.

Final Version of CPSoSaware integrated platform

27

When a command is recorded to a command buffer, the parameters are validated and the same data
structure is constructed in the API layer, but without event dependencies. Instead of calling into the
backend implementation, however, the command is simply stored in the buffer for later. When the buffer
is enqueued, the API layer creates copies of the stored commands, replaces the internal sync points with
proper events and then passes the final command structure to the backend implementation.

In the demo application, the whole OpenVX pipeline is recorded to a single command buffer that is
enqueued once for each video frame. Launching the recorded buffer exhibits a performance degradation
in our overlay implementation compared to enqueuing each recorded separately using the traditional
immediate API. The difference becomes more pronounced in a synthetic benchmark that generates
frames (I.e. command buffers) with around 1800 commands: the traditional immediate enqueuing API
takes around 15ms per frame to process these commands while the command buffer takes a whopping
60ms per frame. This is because of an unoptimized initial implementation, which will be our focus in next
projects where the command buffering will be developed further.

Creating backend-specific implementations of the command buffer functionality so that the API layer of
the library can request the backend to execute the entire buffer in a single call would likely yield great
performance improvements over the overlay implementation.

4.1.4 Multi-Device Edge Scalability for PoCL-R via RDMA

Data center-grade hardware frequently has specialized high-speed network interfaces that support of-
floading the actual data transfer tasks from the CPU to the network interface itself via Remote Direct
Memory Access (RDMA).

With RDMA the CPU can register memory regions for direct memory access from the network interface.
These regions can then be used to request an asynchronous data transfer from a given region on one
machine to a registered region on a different machine. The registered memory regions can be in RAM or
on a device that shares e.g., a PCIe bus with the network interface and can make portions of its memory
directly accessible from the bus, such as a GPU. Since the network interface can directly access the source
and destination memory regions, the CPU does not have to be involved in the transfers beyond the initial
registration and setting up the transfer request. There are different modes of operation, some of which
additionally require the responding side to set up a request for the network interface to accept transfers.
Requests can also be chained, allowing applications to submit multiple requests to the network interface
in a single API call to batch the CPU work efficiently.

Final Version of CPSoSaware integrated platform

28

Figure 10: With TCP sockets, individual parts of messages have to be sent separately and long messages may need
to be split up into multiple write calls to the networking driver.

Pocl-remote (TC2.2.2) was extended to make use of RDMA when transferring OpenCL buffer contents
between remote servers. RDMA being a message-based protocol ended up simplifying the communica-
tion logic a fair bit compared to the stream-based TCP implementation. With TCP multiple read and write
calls were needed to first transfer the message size and then read from the stream the exact number of
bytes needed for the message. With RDMA this is instead handled by the network interface as part of the
protocol, avoiding the extra round-trip through application logic and the kernel networking driver. Simi-
larly, with TCP, large writes must be split up into multiple smaller ones. RDMA instead handles the entire
transfer with a single request regardless of size.

Figure 11: RDMA allows sending arbitrarily long chains of messages in a single call to the driver.

Final Version of CPSoSaware integrated platform

29

Figure 12: Performance improvement in server-to-server buffer transfers when RDMA is used instead of TCP

In a synthetic benchmark that increments a single number in a buffer before transferring it to a different
device on a different machine the move to RDMA proved to be on average 30% faster than the classic TCP
code path. With extremely large buffers the difference further increased to over 60% on average.

These speedups were also reflected in a basic matrix multiplication benchmark where each device was
assigned a subsection of the matrix to compute, and the partial results were transferred to a single device
for combining into the final matrix. As the matrix size was increased, performance increased by around
60% compared to the TCP code path, matching the results of the synthetic transfer benchmark. Notably,
the performance increase does not occur if enough separate machines are added that the portion calcu-
lated and transferred by a single machine stays below the size where the performance improvement in
the synthetic transfer benchmark suddenly climbs from 30% to 60%. Additionally, if the size of the per-
machine portion is reduced the overhead of managing memory regions for each peer becomes apparent
as a reduction in overall performance.

Final Version of CPSoSaware integrated platform

30

Figure 13: Performance improvement in naïve matrix multiplication when server-to-server buffer transfers are
handled with RDMA instead of TCP

4.1.5 Reliability via Redundant Command Queue Execution

The purpose of this demonstration is to show the triple modular redundant voting in a situation where
this is useful. In this hypothetical situation, wrong results can lead to damage to the demonstrator and/or
its environment. An example could be a robot in a hazardous environment where it is possible due to
outside interference that a processing system or communication interface returns the wrong data, causing
it to hit objects in the environment. The setup will be a computer vision scenario with edge detection
replicated to three devices on a CPU and the voting device on an FPGA. To one of the replicated devices
interferences will be introduced, such as values in the input buffers being randomly flipped. The voting
device will take this erroneous data and the correct data from the other two devices and return the correct
result. To help visualize the correcting behaviour, the input buffers to the voting device will be shown.

4.1.5.1 Voter device

In D3.6 [15], a scenario was demonstrated using a PYNQ-Z1 development board which had multiple HLS
devices with the AlmaIFV2 interface doing redundant computation with one device voting on the results.
It was noted back then that there was room for improvement and, in this section, it will be shown what
has been done to address this.

The previous implementation made use of block RAM (BRAM) to store buffers of each device. This type
of RAM is on the FPGA itself and while fast in scenarios where data needs to be read and written to often
by the IPs (functional blocks of hardware on a FPGA are often called Intellectual Property), is not fast when
transfers need to be done from the host. In the task of voting, this is not the case at all, data is read and
written to once, negating any benefits of using BRAM. On top of that, voting generally requires more
memory than the computation being executed redundantly (e.g. in a case of TMR, three input buffers and
one output buffer), which makes BRAM, with its limited size problematic.

Final Version of CPSoSaware integrated platform

31

To address this, a solution was implemented that makes use of the PYNQ-Z1's DDR3 RAM. This RAM con-
sists of 512 MB of which 128 MB is dedicated for contiguous memory allocation (CMA) by default3. This is
a huge improvement compared to BRAM which is 630 KB in total. DMA controller IPs are used to access
this memory in a streaming fashion. This set up would also work.

Some simple tests were done to determine how much data could be moved in this way. Using the PYNQ
python environment with two DMA controllers reading and writing in a FIFO manner, the average
throughput was 946 MB/s. To compare the performance from the CPU to this, the STREAM4 benchmark
was also run. This benchmark was compiled with openMP enabled and the benchmark where a value from
one array is copied to another array reached a maximum speed of 1026 MB/s and 604 MB/s without
openMP. It is possible to bring the performance of the DMA controllers closer to what was achieved with
the CPU benchmark by increasing the clock speeds. The benchmark was run at 100 MHz, the default clock
speed on the Z1, but it is possible to generate bitstreams up to 140 MHz for the subsection that writes to
RAM of the DMA controller, and it is possible to go even higher for the reading subsection. These results
should be taken with a grain of salt since the max frequencies are also dependent on the physical place-
ment which in turn is dependent on the other IPs in the design. Nevertheless, these results lead us to
conclude that it is possible to get high performance from the DDR RAM with the FPGA.

Another design choice different from the previous implementation was to make the HLS design more
modular. And while useful in demonstrating the technology, the previous design left performance on the
table. Previously, the entire AlmaIF core was one IP block, which would handle all aspects from commu-
nication with the host to executing the required built-in kernels. This made the core rather complex, and
the HLS tools were not able to pipeline the actual execution of the kernels. Another downside to this
approach was that all aspects would be tied to the same clock, capping it to the slowest part of the entire
design.

In this implementation, the design consists of multiple IP blocks: a control IP and an IP for every different
built-in kernel, an example of this can be seen in Figure 14.

3 https://pynq.readthedocs.io/en/v2.0/_modules/pynq/xlnk.html

4 https://pynq.readthedocs.io/en/v2.0/_modules/pynq/xlnk.html

Final Version of CPSoSaware integrated platform

32

Figure 14: Block diagram of different IPs. In the center is IP that provides the voter kernel functionality. Not shown
is the control IP

The control IP handles communication with the host, tells the DMA controllers which data to read and
write to and controls the voting IP. Communication with the other IPs is done over AXI and pipelining is
not required. This leaves the voting IP to be simplified and specialized in voting. In FPGA design it is rec-
ommended to turn the work dimensions into one dimension [5]. And this fits well with the contiguous
access patterns of the DMA controllers and allows the HLS tools to pipeline the operations. The result of
this pipelining is that the IP can vote every clock cycle with a delay of 3 cycles. This is shown in Figure
15And since the clocks are now separate, it is possible run the IPs at different clocks. The Vitis HLS CLI
estimates that the control IP can run at a maximum of approximately 130 MHz while the voting IP can run
at just over 1000 MHz, although at that point it will be capped by the maximum frequency that the FPGA
can generate.

Final Version of CPSoSaware integrated platform

33

Figure 15: Example of the pipelining in action, the voter IP can output results every cycle

There are several numbers that can be used to bring the new performance into perspective. The voting
kernel works on packets of 32 bits and is running on a clock of 100 MHz, that puts the maximum through-
put at 381.5 MiB per second. To keep the IP fed, 1144.4 MiB is read every second and 381.5 MiB is written.
That puts the total data transferred every second at 1525 MiB. This is far above the transfer speeds
achieved in the STREAM benchmark.

Unfortunately, much of this performance is lost due to driver overhead. Looking at the traces of execution,
on average the time spent on the kernel is 0.297 milliseconds for an input size of 1024, this puts the
throughput on 13.2 MiB per second. However, this is still much faster than the previous implementation
which had an estimated throughput of 4.9 MiB per second on an input of 128. It becomes clear that this
new implementation is faster than the previous implementation.

One might argue that this implementation is too tailored to the PYNQ-Z1 by making use of the RAM also
used by the ARM CPU. But fortunately, it is not uncommon to see large DDR RAM banks on larger (PCIe)
FPGAs, such as for example the Xilinx UltraScale and Alveo series. And something similar can be done as
what Ruan et al. [16] did and prefetch data from the host to the FPGA RAM before it is needed by the
voter device. Another possible solution to the limited memory of the FPGA that is often seen in other
OpenCL libraries would be to make use of OpenCL pipes. But since it would require the programmer to
rewrite the kernels to use pipes, which reduces the portability, this was left out for now.

4.1.5.2 AlmaIFv2 HLS

In order for Programmers to quickly start implementing their own custom built-in kernels with the
AlmaIFv2 interface, an example HLS template was created. The High Level Synthesis (HLS) allows one to
write IP functionality in the more familiar C language and have it compiled to a Hardware Description
Language (HDL) like Verilog or VHDL. The template contains source code and scripts to generate a working
bitstream that can be programmed onto the FPGA.

Included with the template is also a testbench file written in C. This file can be used in two different forms
of testing. The form is a C simulation: the code is compiled with a conventional compiler and the results
of executing the functions describing the IP blocks are checked. This is quick and can be done without
using HLS tools such as Vitis HLS. Many logical mistakes will manifest in such a simulation. The other form

Final Version of CPSoSaware integrated platform

34

is a behavioral simulation in which the C code is compiled to a Register Transfer Level (RTL) level and the
results are verified. This is a more accurate simulation, but it takes longer. Being able to catch these bugs
early on is beneficial for productivity since there is a considerable amount of time spent compiling and
synthesizing before the code written is deployed on to the FPGA.

Included with the template is also a CMake file which can be used by many C IDEs to configure a build
environment. This allows programmers to write code in a program they are more familiar with, lowering
the barrier even more. On top of this, they can easily use their IDE’s debugging environment to solve bugs
encountered. The Vitis HLS IDE does also provide the possibility to insert breakpoints, however for un-
known reasons, when using Vitis 2022.1.2, these were not being hit for the template.

4.1.5.3 Erroneous device behavior simulation

Previously in D3.6, an API function in PoCL was shown that could allow one to run OpenCL kernels in a
redundant way to improve reliability. The report of D3.6 mainly focused on the overhead and since then,
work has gone into also demonstrating the correctness of the implementation. In this section, a demon-
strator is described, and the results are shown.

Under normal circumstances, the failure of a computational device does not happen often. The exact
Mean Time Between Failure (MTBF) varies widely from one system to another but in demonstrative pur-
poses is often on the scale of decades [17]. To speed things up, a system can be exposed to radiation,
however this could potentially permanently damage the system. Therefore, a less permanent demonstra-
tion was devised.

By inserting a second kernel to the queue of a redundant device, erroneous behavior can be simulated.
This kernel takes the output buffer of the kernel a programmer wants to be run redundantly and randomly
changes bits before then passing it on to the voting kernel. This implementation has a number of benefits.
First off, since the kernel is used to simulate the behavior, this can be used to simulate any erroneous
device supported by PoCL. Secondly, the error rate can be tuned to a desirable percentage of errors. This
can be useful if the input size is small and therefore the chance of an error manifesting is smaller. Thirdly,
there is no need to modify the redundant kernels in order to simulate any faults. Going from normal usage
to a simulation can be done by setting a compiler flag.

As a demonstration, an example setup has been made which highlights the results of executing kernels
redundantly with one device being faulty. In this demonstration, a sobel edge detection kernel is applied
to an 800 by 600 pixel gray-scale image (Figure 16). The faulty device will randomly set black pixels to
white as can be seen in below (Figure 17).

Final Version of CPSoSaware integrated platform

35

Figure 16: input gray-scale image for the faulty device demonstrator

Figure 17: corrected resulting image.

Looking at the normally corrected image (Figure 17), one can see that the white pixels are regions of
interest and that there are relatively fewer white than black pixels. Under normal circumstances, subse-
quent image processing could further propagate this error and make the result unusable. However, the
voting device is able to correct this error and output the proper image.

A new API call has been added to PoCL that allows one to retrieve a redundant output buffer. It is intended
for testing purposes, but being to inspect a manual buffer allows the end programmer to see the correct-
ing behaviour in action and not blindly believe in the fault tolerance capabilities.

Final Version of CPSoSaware integrated platform

36

4.1.6 Nano-PoCL: Edge OpenCL Client for Near-Sensor Offloading

Nano-PoCL is a minified deployment of PoCL that can be executed in very low-end network connected
edge devices to perform offloading to a centralized server using PoCL-R. A part of this activity was also
lightweight video compression running on the edge device reducing the data size and transmission time.
The video is then consumed and processed by a deep learning—based computer vision algorithm running
in a centralized computer in the car.

Nano-PoCL work was implemented by using a RISC-V—based GAP8 system-on-chip (SoC) on an “AI Deck”
add-on board for a Crazyflie nano-drone (Figure 18). This work consisted of two parts: reducing the
amount of resources used by the PoCL code base itself and implementing the required POSIX functionality
in the FreeRTOS environment provided by the GAP8 SDK.

The resource consumption of PoCL itself was reduced with a combination of compiler and toolchain con-
figuration changes, removing functionality that is unnecessary for a remote-only implementation or non-
sensical in a bare-metal environment, and shortening various initially rather conservative static allocations
around the code base. Large static allocations were found frequently in code dealing with name or log
strings provided by or meant for users and application developers. Since an embedded environment like
a nano-drone or a car can work simply with a set of fixed IP addresses and device indices, much of this
memory and logic was deemed unnecessary and removed.

Figure 18: Hardware layout of the Crazyflie nano drone. The STM32 chip is the main control unit of the drone body.
It communicates with the proprietary radio RTF chip via SPI and with the WiFi-enabled ESP32 on the AI Deck via

UART. The main CPU of the AI Deck is the GAP8 that communicates with the ESP32 via SPI. The ESP32 also routes
messages between the STM32 and the GAP8

Implementing the required POSIX networking APIs proved to be tricky since the GAP8 SoC itself does not
have any network connectivity. This is instead handled by a separate ESP32 SoC with integrated Wi-Fi on
the same circuit board. The ESP32 can additionally communicate with the main board of the drone.

Final Version of CPSoSaware integrated platform

37

Due to this board layout the networking APIs were implemented on the GAP8 as stubs that send short
messages to the ESP32, which provides the actual functionality and exposes a POSIX-like API in its SDK.
The ESP then replies to the GAP8 with a message containing the output data from the respective API call.

In order to demonstrate the functionality in a practical control loop scenario, a simple application was
devised to run on the GAP8 SoC. The application takes a picture using the camera integrated in the AI
Deck and finds the position of the brightest pixel in it. The task of finding the brightest pixel is offloaded
to a different machine on the network via PoCL-Remote. This information is then used to send a command
via the ESP32 to the STM32 control SoC on the drone’s main board to turn the drone to face the position
of said pixel and adjust its hovering altitude to match.

A number of problems were found while testing with this application. Most notably, the ESP32 SoC in
charge of the Wi-Fi connection turned out to have rather aggressive power saving measures, causing it to
constantly drop to a lower power state. Waking the chip up again for the next request added an unpre-
dictable amount of latency to the next command, ranging anywhere from a few milliseconds to hundreds
of milliseconds.

Final Version of CPSoSaware integrated platform

38

Figure 19: Battery voltage over time during the run time of the demonstrator application.

Second, the OpenCL kernel for finding the brightest pixel in the image turned out to be so lightweight that
the additional delay and power consumption of powering on the Wi-Fi chip outweighed any benefits from
offloading the kernel instead of performing the computations on the GAP8.

For the video compression part, a full demo is not integrated yet, however, we studied several compres-
sion algorithms and gathered preliminary results that are going to drive the eventual realization:

• ASTC texture compression was shown to achieve 2.3x the encoding speed of JPEG on a mobile
device at the cost of about 1.7-4.4 percentage points (pp) of semantic segmentation accuracy
(measured as mean intersection over union, mIoU) after retraining the model with decompressed
images.

• We identified potential improvements of 22-23% of the encoding time of JPEG XS reference
encoder at the cost of 0.3-0.4 pp mIoU after retraining. Nevertheless, the JPEG XS reference
encoder is still too slow for real-time deployment and needs more optimizations.

Final Version of CPSoSaware integrated platform

39

• As compressed data is expected to be transmitted via a wireless link, we also studied Linear Video
Coding (LVC) and its effect on computer vision task accuracy. LVC is a joined source-channel
coding scheme consisting of a simple compression based on Discrete Cosine Transform (DCT) and
additional linear transforms aimed to enhance the resilience against channel noise and packet
losses. The object detection task showed high resilience against channel impairments while
semantic segmentation showed a high resilience against discarding DCT coefficients.

The preliminary results justify the use of ASTC as a lightweight compression method and LVC as a method
for both compression and hardening against wireless channel impairments.

Final Version of CPSoSaware integrated platform

40

5 Connected and Autonomous Vehicles

The idea of cooperation has been introduced to self-driving cars about a decade ago with the aim to re-
duce the occlusion caused by other users or the scene. More recently, the research efforts turned toward
cooperative infrastructure bringing a new kind of the point of view as well as more processing.

High-quality localization, the ability for agents to estimate their poses reliably and accurately (i.e., posi-
tions and orientations) with respect to the surrounding environment or to a geographic coordinate sys-
tem, is crucial. The GNSS, as a traditional solution, is not always available or reliable, due to reasons such
as signal blockages, multipath reflection, and jamming [18]. One potential solution for localization in
GNSS-denied environments is to utilise map matching techniques, given a prior map represented as a
scalar field. Scalar fields associate a scalar value with every point in space, and applications include gravity
anomaly [19], magnetic anomaly [19] [20], topographic [21], and olfaction, to name a few. Methods uti-
lising scalar fields for localization regulate agents’ dead-reckoning error growth through matching the in-
formation measured by on-board sensors with the prior given scalar field maps, such as terrain-aid navi-
gation and magnetic anomaly–based navigation. CPSoSAWARE has engaged a multitude of modules for
environmental modelling, self-localization, vehicle control, Driver System Monitoring, and cyber-attack
immunization. All the modules above are involved in Level-3 and level-4 autonomous. Such modules syn-
ergy was also considered in CPSoSAWARE. Figure 20 illustrates all the modules developed in the automo-
tive pillar of CPSoSAWARE as well as the synergies and the associations.

Figure 20: Interaction surfaces

Final Version of CPSoSaware integrated platform

41

5.1 Cooperative awareness

Cooperative awareness is realized in CPSoSAWARE in two complementary solutions, the Co – Operative
Localisation based on dynamic agents (simulator based) and the Co – Operative Localization based on
static agents. The integration of the components that cooperate to deliver these two solutions are de-
scribed in sections 5.1.1 and 5.1.2 that follows.

5.1.1 Co – Operative localisation with dynamic agents (Simulation Based)

The simulation-based demonstration scenario for cooperative awareness is based on Carla. Carla is an
open-source autonomous vehicle platform developed by the Urban Computing Foundation and is de-
signed to be used as a testbed for developing and evaluating autonomous vehicle technologies. Carla
provides a realistic simulation environment for testing and evaluating autonomous vehicle algorithms,
including perception, localization, planning, and control. The Carla platform includes several tools and
libraries for working with autonomous vehicles, including a server component that runs the simulation
and provides an interface for connecting to the simulation from external clients and a Python client library
for connecting to the simulation server and interacting with the simulation. The co – operative localisation
with dynamic agents involves the interaction of various sub – modules as depicted in Figure 21.

Figure 21: Submodules of the co - operative location with dynamic agents module

5.1.1.1 AI acceleration and deep multimodal scene understanding

As part of integrating Cooperative Awareness module in the CARLA simulator, the first key sub-module is
about Accelerated Deep Multimodal Scene Understanding5. This sub-module is mounted to each simu-
lated vehicle and is responsible for identifying nearby active road users, i.e., cars, pedestrians, etc., and
extract useful scene analysis indicators such as relative distances and angles, using image and LIDAR data.

Before pilot execution: For the tasks of this submodule, we have initially employed two state-of-the-art
deep learning models, i.e., SqueezeDet and PointPillar for 2D image and 3D point cloud processing, re-
spectively, evaluated on standard benchmark of KITTI dataset and CARLA simulator in order to be “close
to reality” operational. SqueezeDet is a fully convolutional detection network consisting of a feature-
extraction part that extracts high dimensional feature maps for the input image, and ConvDet, a

5 https://gitlab.com/isi_athena_rc/cpsosaware/multimodal-scene-understanding

Final Version of CPSoSaware integrated platform

42

convolutional layer to locate objects and predict their class. For the derivation of the final detection, the
output is filtered based on a confidence index also extracted by the ConvDet layer. Feature-extraction
(convolutional) part of SqueezeDet is based on SqueezeNet, which is a fully convolutional neural network
that employs a special architecture that drastically reduces its size while remaining within the state-of-
the-art performance territory. Its building block is the "fire" module that consists of a "squeeze" 1 × 1
convolutional layer to reduce the number of input channels, followed by 1 × 1 and 3 × 3 "expand"
convolutional layers that are connected in parallel to the "squeezed" output. SqueezeNet consists of 8
such modules connected in series. PointPillar network, is designed for 3D object detection using LiDAR
point clouds. The architecture of PointPillars consists of three main stages. More specifically, the first
stage transforms the point cloud into a pseudo-image by grouping the points of the cloud into vertical
columns, called pillars, that are positioned based on a partition of the 𝑥 − 𝑦 plane. The second stage
consists of a feature extraction backbone network providing high-level feature-rich representations of the
input. Finally, object detection takes place in the third stage, which is responsible for producing 3D
bounding boxes and confidence scores for the classes of interest.

After pilot execution: After the pilot execution, it was highlighted the need to combine the visual
modalities in order to increase overall scene analysis ability, since standalone camera or LIDAR may fail to
produce meaningful results. As such, a late fusion strategy takes place combining 2D driven detections
and 3D driven detections. Initially, 3D bounding boxes are projected upon the 2D plane and converted to
2D bounding boxes. To fuse 2D and 3D measurements a non-maximal suppression driven approach takes
place redefining the bounding boxes on the 2D space. Afterwards, to define vehicle range measurements
2D projects are matched to 3D points of the point cloud. Subsequently, each 3D point of the point cloud
[xi, yi, zi] is projected upon the 3D image. Apart from the need of increasing scene analysis and
understanding accuracy, it as also important to reduce the execution time of inferense so as to extract in
real time usefull indicators about nearby vehicles. Therefore, in order to achieve the goal of acceleration
weight-sharing model compression and acceleration (MCA) techniques are applied to the involved
models. Concerning SqueezeDet, the focus is on its feature-extraction part, namely, SqueezeNet that, as
already described, consists of 8 "fire" modules connected in series. SqueezeNet is responsible for roughly
83% of the total 5.3 × 10! MAC operations and 76% of the approximately 16 MB storage space required
by SqueezeDet. Since it constitutes an already efficient network, we only targeted SqueezeNet's "expand"
layers in our experiments. Acceleration was performed in 8 acceleration stages (one "expand" module per
stage), followed by retraining. Concerning PointPillars, its feature-extraction (backbone) stage is
responsible for 97.7% of the total MAC operations required. In total, the Pointpillars network
encompasses 4.835 × 10" parameters and requires 63.835 × 10! MACs. For a good balance between
acceleration and accuracy loss, we only targeted the convolutional layers of the backbone network
comprising the second stage of PointPillars. Specifically, the targeted 2D- and 4 × 4 transposed 2D-
convolutional layers, are responsible for approximately 47% and 44.4% of the total required MACs,
respectively. Acceleration was performed on 16 acceleration stages with each stage involving the
quantization of a particular layer, followed by fine-tuning. Using acceleration ratios of 𝛼 = 10, 20, 30, and
40 on the targeted layers, lead to a reduction of the total required MACs by 82%, 86%, 88%, and 89%,
or equivalently, to total model acceleration of PointPillars by 5.6 ×, 7.6 ×, 8.6 ×, and 9.2 ×, respectively.

Final Version of CPSoSaware integrated platform

43

Besides scene analysis and understaning indicators regarding nearby objects, visual data have been also
utilized in order to estimate vehicle location as well as to determine the landmarks of the map using
renowned SLAM algorithms6.

Before pilot execution: Initially, state-of-the-art open source SLAM algorithms based on camera and
LIDAR sensor have been integrated to CARLA simulator and thoroughly evaluated. The evaluation study
highlighted the need for additional backend approaches in order to increase pose accuracy during
challenging outdoor conditions of driving.

After pilot execution: For the purposes of pilot setup, the developed relocalization backend is build on
top of these SLAM algorithms in order to refine and correct the estimated pose. This is achieved by
combining and fusing the topologies of poses and landmarks generated by SLAM approach, through Graph
Laplacian Processing technique and Kalman Filter.

For more details about AI Acceleration and Deep Multimodal Scene Understanding, see Deliverable D3.1
[22].

5.1.1.2 Multimodal localisation API

This submodule7 exploits the concept of cooperation for multimodal sensor fusion among a group of
interacting vehicles.

Before pilot execution: Relative measurements among neighboring vehicles, as well as their noisy
positions were created synthetically, adding measurement noise to the corresponding ground thruth
quantities of CARLA simulator. Ego vehicles process all these informations and additionally exploits data
association along with Graph Laplacian Processsing technique in order to formulate a location estimation
scheme and to match relative measurements with vehicles’ ids.

After pilot execution: Instead of synthetic measuremens, the output of AI Acceleration and Deep
Multimodal Scene Understanding modules have been used in order to extract realistic relative
measurements and noisy positions of vehicles. More specifically, Multimodal Localization API of ego
vehicle is feeded now by the AI Acceleration and Deep Multimodal Scene Understanding modules of itself
and its neighbors, in order to estimate the positions of vehicles. The output of this processing is the
estimated positions of ego vehicle and its neighbors, much more accurate than the noisy positions of
vehicles generated by GPS or other state-of-the-art solutions..

6 https://gitlab.com/isi_athena_rc/cpsosaware/odometers

7 https://gitlab.com/isi_athena_rc/cpsosaware/cooperative-localization-and-tracking

Final Version of CPSoSaware integrated platform

44

See more details about Multimodal Localization API in Deliverable D3.3 [23].

5.1.1.3 Path planning API

After pilot execution setup: Multimodal Localization API highlighted the potential for exploting the
estimated positions of a cluster of vehicles in order to design more efficient path planning strategies and
to enhance safety, performance and effectiveness of autonomous and interconnected driving. Threfore,
this submodule8 aims to provide a robust way to adjust the acceleration of each platoon vehicle and avoid
collisions. This is achieved by transforming the control problem into an iterative, finite-horizon
optimization with local constraints. More specifically, we focus on cooperative control in order to design
appropriate distributed algorithms such that the group of vehicles can reach consensus on the shared
information in the presence of limited and unreliable information exchange and dynamically changing
interaction topologies. The control objective of this sub-module is to make the network of vehicles
maintain a rigid formation geometry by following a desired trajectory. To achieve this task, we have
developed an Alternating Direction Method of Multipliers (ADMM) based scheme realizing distributed
model-predictive controllers (MPCs).

See more details about Path Planning API in Deliverable D3.3 [23].

5.1.1.4 V2X simulator

Before pilot execution: Our framework combines a network and traffic simulator into CARLA. More
specifically, Artery V2X Simulation framework, which is built on top of OMNET++ framework, was our
choice for simulating network communications and more specifically V2X communications. For the control
and the coordination of the simulating entities we have chosen SUMO. CARLA simulator supports a set of
four combinations of simulation step (fixed and variable) and client-server synchronicity (synchronous and
asynchronous), among which, the simulation stability and results repeatability is achieved through the
choice of a fixed time step and the synchronous client-server interaction mode. This allows a single
external client to define the pace of simulation progress without any concerns regarding the processing
speed mismatches. Since we have multiple sub-systems with their own stepping logic, it is evident that a
single place must exist, that will act as a clock gate and synchronization point. This role can be realized by
the Traffic Control Interface (TraCI) of the SUMO simulator that already supports interactions with both
CARLA and OMNET++, in different contexts - in particular, with the Artery V2X Simulation framework.
Furthermore, CARLA interacts with ROS through the CARLA-ROS Bridge. Since in synchronous mode, only
one client can tick the CARLA server, the Bridge must be also launched in passive mode, for the timing of
the ROS subsystem to follow the single system clock source, too. Finally, in order to export to the ROS
subsystem important, application-level information, such as the ETSI ITS CAM from the Artery/OMNET++
network simulation, the ros-etsi-its-messages encapsulation library can be used. The whole chain step is

8 https://gitlab.com/isi_athena_rc/cpsosaware/cooperative_path_planning

Final Version of CPSoSaware integrated platform

45

controlled by the slowest element, which is the network simulator and can be started or stopped through
the ONMET++ user interface.

After pilot execution: V2X simulator was employed in order to simulate realistic conditions of V2V
communication among the interconnected vehicles which utilize the Multimodal Localization API. In that
way, realistic deployment of Multimodal Localization API has been performed since the impact of network
delay on cooperative positions’ estimation has been also considered.

5.1.2 Co – Operative localisation with static agents

The main purpose of the co-operative localization is to perform registration between the Prior Map of a
test area, obtained through screening the area throughout the training phase and the the current map
acquired during scanning the area. The Sparse MAp RegisTration (SMART) module is ideally to define a
bijective transformation between two versions of the map, coming from consecutive observations. This
would mean that all the landmarks detected in one map would correspond to just one landmark in the
second map. Using landmarks instead of points in a dense point cloud is the reason we use the word
sparse in the naming of the module.

The problem to be solved is using the detected landmarks in a way in which the outliers are ignored, and
registration is performed with a minimal spatial error inflicted, so that the vehicle localization is in turn
more accurate. To achieve this, we have to get enough corresponding landmarks from the Landmark Ex-
traction module in subsequent iterations, so that registration is feasible.

5.1.2.1 Software Structure

SmaRt functionalities are inside Least Mean Squares with Measurement Exchange (LME). When they will
be used in a standalone module, the interfaces will change accordingly. The pose output produced by LME
is better suited as an output here, while not showing the full functionality. For calling LME functions,
please refer to the LME documentation. The part relevant to SmaRt, is the calls related to ICP, which is
also a class and instantiated as a member variable of RoadClass, once per camera. Once the landmarks
are added to the list of a RoadSide object, ICP can be called using first the function to add all points to the
point cloud. This function allows for augmentation of Parking Slot landmarks, by adding more "virtual"
points on the line defining them (from entry point to back point):

1. void addAllPts2ICP(i32 numOfVirtPts);

We can also have the trained point cloud to compare to, we have to somehow load it from memory. At
the moment, for the Algo C implementation this is done by dumping the detected landmarks at the phase
of training to several text _les, then loading them in the beginning of the testing phase. For the Proof of
Concept stage, saving is done once, when the car is stopped at the drop-o_ zone and loading is done in
the beginning of the test drive. The functions to do this, are also in LME:

2. void saveDropO_(); void loadDropO_();

Final Version of CPSoSaware integrated platform

46

Then, 2d ICP based registration can take place using:

3. void calcPose(const RoadSide& trainedRS, bool smooth = false);

This function performs ICP registration and pose estimation at once, allowing the user to smooth the re-
sults so that the median value of past estimations is used, avoiding jitter in the output. The core function
of PMD:

4. bool run (Interface::Map const& interfaces, KeyboardFlags const& keyboardFlag s) override;

Updates and gets the output to the interface of LME, that carries the :

5. void updateInterface (TimeStamp time);
6. pmd::interfaces::PMD getInterfaceObject(void);

5.1.2.2 Module Description

This work follows a single camera approach, which allows for redundancy in cases where one of the cam-
eras is defective, or soiled. It also allows late fusion of the results to create an optimized global map. The
main process is based on an Iterative Closest Point implementation running on the trained vs. the testing
point clouds. These two-point clouds are enhanced versions of the most prominent point on the detected
landmarks, which now are only PMD related (closest vertex for lines, entry point for slots). The most im-
portant landmarks are the slots in our case, so they can be augmented by additional points on their de-
fining midline.

The general block diagram of SmaRt and its interaction with LME in its intended form is depicted in Figure
22.

Final Version of CPSoSaware integrated platform

47

Figure 22: The block diagram of LME and SmaRt

5.1.2.3 Re – Localization module

To be technically able to apply motion planning in the valet parking applications, the basic idea of planning
in traditional robotics engineering needs to be adapted to the automotive industry requirements. Due to
the huge size of required maps, long driving lengths, security and safety concerns along with dynamics
limitations of the automotive section, the motion planning algorithms which are being hired in the auto-
motive industry should satisfy these concerns. To satisfy the requirements of Home Zone Parking, motion
planning in autonomous vehicles has been divided in three main sections: global, local planning and colli-
sion avoidance (Figure 23).

Figure 23: The framework of an autonomous system.

5.1.2.4 Global planning

CPSoSAWARE Co-Operative Awareness solution employs Global path planner to provides the optimal path
regarding the provided KPIs of the planning. E.g. using a Hybrid A* used to provide waypoints to the target
area, as illustrated in Figure 24.

Final Version of CPSoSaware integrated platform

48

Figure 24: Planning a global path for a test vehicle in Panasonic Automotive building to go to the Parking area using

Hybrid A*

The global path is planned offline before the robot start to move. This global path aids the robot to trav-
erse within the real environment because the feasible optimal path has been constructed within the en-
vironment. However, in order to solve the Robot Path Planning (RPP) problem when the robot is faced
with obstacles. Local path is constructed online while the vehicle avoids the obstacles in a real time envi-
ronment. The performances of the algorithm in terms of computational efficiency was observed and eval-
uated based on the distance, time and number of iteration the algorithm takes to find an optimal path.

5.1.2.5 Local planning

By knowing the global waypoints which are required to be followed, an autonomous agent finds its local
optimum path to follow due to the mechanical and physical constraints of the vehicle as illustrated in
Figure 25.

Figure 25: Planning local path section to follow a global Path for a test vehicle in Panasonic building (Left) and a
Clothoid based parking maneuver from the parking area to the final target position (Right)

Final Version of CPSoSaware integrated platform

49

As mentioned above local path planning algorithm is employed to avoid collisions. Collision avoidance
algorithms are responsible to avoid any possible collision to the moving or stationary objects, here the
algorithms which keep the ego vehicle away from the objects will be used as shown in Figure 26.

Figure 26: Avoiding a collision while following a path for a test vehicle

Finally, for the co-operative localization solution to be fulfilled, the Re-localization Module is needed. In
the case of co-operative localization scenario, tested in CPSoSAWARE, the size of used map is much
smaller than the real “last mile” or valet parking solutions:

5.1.2.6 Re – localisation module

The module implements a state machine based on the following states:

1. MANEUVER_STATE_ERROR (Planning state: OFF): This state represents the condition where
the system has detected some unusual conditions and reported an error in the state machine.

2. MANEUVER_STATE_MANEUAL (Planning state: OFF): Through this condition, the car is
driven manually or the vehicle is in the training-mode and the relocalization module state is
set to “training”.

3. MANEUVER_STATE_INITIAL (Planning state: ACTIVE): The vehicle is in the trial parking and
the re-localization module state is set to “parking”. In the case we need to just drive a very
short distance forward to recalculate the location of the vehicle: Type of planner: a simple
short (1 to 1.5 m) Straight line, no lateral positioning (no steering control, is set to be zero).
No especial algorithm is used. Just a simple geometrical calculation Planning speed: 2 kph
with longitudinal control (due to the very high uncertainty)

Final Version of CPSoSaware integrated platform

50

4. MANEUVER_STATE_EXPLORING (Planning state: ACTIVE): In this mode, the re-localization
module has already got trained and the current state of that is “parking”. The initial re -
calculated intermediate and final target positions are provided to the planner as depicted in
Figure 27:

Figure 27: Illustration of the initial position, intermediate and goal positions as derived by the Path Planning
algorithms

The path planning method is based on Clothoids with lateral and longitudinal controller Planning speed:
up to 10 kph (normally around 3kph in this case) as illustrated in Figure 28.

Figure 28: Path Planning part of the cooperative awareness and output of the map registration and final positions

Final Version of CPSoSaware integrated platform

51

5. MANEUVER_STATE_AUTO_DRIVE (Planning state: OFF): This state encodes the situation where
whenever a planned path is exported to the vehicle and is confirmed with the controller, the plan-
ner state will go the auto drive state.

6. MANEUVER_STATE_RE_EXPLORING (Planning state: ACTIVE): In this state the planner waits until
the perception part reports a valid parking position, and the vehicle is stationary. When the vehi-
cle is in auto drive mode and an error is detected in path following, or even if a new target position
is provided which is way too off from the previous target position it will force the planner to go
re-planning state.

7. MANEUVER_STATE_EXPLORING (Planning state: ACTIVE): The main work in this state is the error
calculation while the path is followed. It is done as follow:
• The planned path is converted to the world coordinates for the corresponding initial planned

position.
• A virtual path in global coordinates is calculated for the front axle of the vehicle for the

planned path.
• If the vehicle is moving forward the position of the middle of front axle of the ego vehicle is

calculated based on the provided world coordinate of the system (odom)
• From the converted list of the planned path the closet point (in X direction) to the current

odomposition is found and the following error is path following is calculated:

Figure 29: Path Planning steps involved in state 6.

2
𝒙𝒆
𝒚𝒆
𝜽𝒆
3 = 	 4

𝐜𝐨𝐬 𝜽𝒅 𝐬𝐢𝐧 𝜽𝒅 𝟎
− 𝐬𝐢𝐧 𝜽𝒅 𝐜𝐨𝐬 𝜽𝒅 𝟎

𝟎 𝟎 𝟏
5 2
𝒙𝒓 − 𝒙𝒅
𝒚𝒓 − 𝒚𝒅
𝜽𝒓 − 𝜽𝒅

3 à

⎩
⎨

⎧𝒙𝒆̇ = −𝒗𝒅	 +	𝒗𝒓 𝐜𝐨𝐬 𝜽𝒆 + 𝒚𝒆
𝒗𝒅
𝒍
𝐭𝐚𝐧𝝋𝒅

𝒚𝒆 =̇ 𝒗𝒓 𝐬𝐢𝐧 𝜽𝒆 − 𝒙𝒆
𝒗𝒅
𝒍
𝐭𝐚𝐧𝝋𝒅

𝜽𝒆̇ =	
𝒗𝒓
𝒍
𝐭𝐚𝐧𝝋𝒓 −

𝒗𝒅
𝒍
𝐭𝐚𝐧𝝋𝒅

 Equation 1

If the planner decides that the vehicle is off from the planned path either can re plan using state 4 or
request an AEB.

8. MANEUVER_STATE_PARKING: While the vehicle following the path in exploration mode, the
target position of PSF and Re-localization modules are received and when the planner confirm

Final Version of CPSoSaware integrated platform

52

that they are identical location. The normal parking manoeuvres (Clothoid-based) will be planned
accordingly.

5.1.2.7 Odom fusion

These deliverable intents to describe the fusion of different odometry cues such as Visual Odometry, Ve-
hicle Odometry, and GPS, into a unified estimate, which robustified the estimation of vehicle location
under a diversity of weathering, illumination conditions and kinematics.

The basic task of this module is to choose and fuse input odometries from the sources offered by our
CPSoSAWARE in order to create an output trajectory which is as correct and robust as possible.

Since GPS is the only available input that allows for an absolute positional measurement, it seems natural
that GPS information should be included in the odometry fusion. All other odometries follow the dead
reckoning principle, meaning that they have no means to recover from any inaccuracies in a past frame.
However, the frame-to-frame accuracy of GPS is much lower than of the other means of collecting odom-
etry information. Experiments indicate that this coarseness makes a direct integration of GPS information
in real-time odometry very difficult if the excellent detail of the odometries should be retained.

The first approach of using GPS information in odometry fusion thus is not a real-time one but one that
alters that odometry of past frames as well. While this has serious drawbacks for application use, it shows
that an integration of GPS is possible while retaining smooth trajectories.

During testing and development, the odomfusion module certainly depends on all modules which create
an odometry as their output. Once the work in this module has become mature enough, it may be possible
to cancel some of these dependencies if their odometries are not needed as input.

Apart from the common algorithm and math library, odometry fusion depends on the modules that pro-
vide its input, potentially including:

• Vehicle Odometry
• Visual Odometry
• GPS

OpenCV is used only during debugging to store images etc. It is not part of the implementation of any of
the algorithms. No other third-party libraries are being used in odometry fusion

The first estimator to include GPS information uses nonlinear optimization over a window of past frames.
In each frame, it computes the affine transformation that minimizes the distance to the GPS trajectory if
applied to the trajectory points in a windowed fashion with its weight declining over time.

In order to allow for quantitative evaluation, several dedicated sets of test data have been selected/ rec-
orded which can be categorized as:

Final Version of CPSoSaware integrated platform

53

a. Same position in start and end. This is the simplest way to analyse for drift and inaccurately
measured motions globally.

b. Repetition of trajectory. This includes two or more recordings and may allow to find inaccuracies
where they occur rather than just globally.

c. Measured driving distance: This allows for evaluating the estimated global scale

During the performance optimization of a computer vision system, developers frequently run into plat-
form-level inefficiencies and bottlenecks that cannot be addressed by traditional methods. CPSoSAWARE
addresses such system-level issues by means of a graph-based computation model. This approach differs
from the traditional acceleration of one-off functions and exposes optimization possibilities that might
not be available or obvious with traditional computer vision libraries such as OpenCV. Remote Processing
is simply the practice of computing results on a non-host core such as a GPU, a DSP, or other specialized
core such as an accelerator. We will refer to equation-2 to discuss its impact on optimization strategies.
This equation expresses the latency of remote processing for a single function call:

𝑳𝒓(𝟏) = 𝑪𝒍𝒇 + 𝑰𝑷𝑪𝒔𝒆𝒏𝒅 + 𝑪𝒓𝒊 + 𝒆𝒙𝒆𝒄𝒓(𝒅𝒂𝒕𝒂, 𝒑𝒂𝒓𝒂𝒎𝒔) + 𝑪𝒓𝒇 + 𝑰𝑷𝑪𝒓𝒆𝒄𝒗 + 𝑪𝒍𝒊 Equation 2

where

• 𝐿#¨ Latency of remote processing.
• 𝐶$% Host Core Cache Flush of impacted data
• 𝐼𝑃𝐶&'() Total latency from Host-to-Remote-Core activation time.

This accounts for line transmission, and possibly also system-thread switching and
OS kernel/driver overheads.

• 𝐶#* Remote Core Cache invalidate for affected data.
• 𝑒𝑥𝑒𝑐#(𝑑𝑎𝑡𝑎, 𝑝𝑎𝑟𝑎𝑚𝑠) Remote Execution time varies on data size and other parameters.
• 𝐶#% Remote Core Cache flush for affected data.
• 𝐼𝑃𝐶	#'+, Total latency from Remote-Core-to-Host activation time (with overheads

as in 𝐼𝑃𝐶&'()).

5.1.2.7.1 Runtime Performance on multiple Platforms

The odom-Fusion Module contributed to CPSoSAWARE project was demonstrated on Dell Latitude E6540
Nvidia DrivePX2, Texas Instruments TDA2X and Raspberry Pi.

The runtime of the different real-time odometry fusion algorithms is displayed in the following table. they
have been tested on a standard 2015 Laptop workstation (Dell Latitude E6540), Drive-PX2, TDA2X and
Rasberry pi. Note that the implementations have been optimized for fast performance. Also note that it
may not be mandatory to run odometry fusion on every frame. The timing in Table 1-Table 4 is given in
milliseconds.

Final Version of CPSoSaware integrated platform

54

Table 1: Odom Fusion Runtime Profile on (Dell Latitude E6540)

Fusion mode Average Runtime Standard Deviation

Ekf (original) 0.008 0.002

Linear KF (veh + vis) 0.011 0.003

Linear KF (veh + vis + GPS) 0.017 0.003

The output of odomFusion on Nividia Drive-PX2 as well as the runtime profiling are presented on Figure
30 and Table 2 respectively. As described in the section above, timing is given in milliseconds.

(a) (b)

(c) (d)

Final Version of CPSoSaware integrated platform

55

(e) (f)

(g) (h)

Figure 30: Odom-Fusion output running on DrivePX2. (a),(b): Depict the hardware setup and the development
environment. (c)-(h) Visual output of the odomFusion Running on Nvidia Drive PX2

Table 2: Odom Fusion Runtime Profile on (on Nvidia Drive PX2)

Fusion mode Average Runtime Standard Deviation

Ekf (original) 0.004 0.002

Linear KF (veh + vis) 0.009 0.0023

Linear KF (veh + vis + GPS) 0.013 0.0021

The Odom-Fusion Porting on TDA2X corresponds to a multi-core development scheme, where the distri-
bution of computational load on the processors is as follows:

• ARM15 (80%)

• 2 DSP (30%)

Final Version of CPSoSaware integrated platform

56

• 1EVE (15%)

• 3 EVE not used

• 15fps

In association to the above subsection, the runtime profiling is illustrated in Table 3:

Table 3: Odom Fusion Runtime Profile on (on TDA2x)

Fusion mode Average Runtime Standard Deviation

Ekf (original) 0.009 0.004

Linear KF (veh + vis) 0.019 0.005

Linear KF (veh + vis + GPS) 0.023 0.0054

The Odom-Fusion Porting on Raspberry Pi involves development scheme, where the computational load
is on the CA72 ARM core, reaches 62%. The timing profile for the odom Fusion on raspberry pi is depicted
on Table 4.

Table 4: Odom Fusion Runtime Profile on (on Raspberry Pi)

Fusion mode Average Runtime Standard Deviation

Ekf (original) 0.007 0.002

Linear KF (veh + vis) 0.015 0.0025

Linear KF (veh + vis + GPS) 0.019 0.0033

5.2 V2X communications Simulation Environment

5.2.1 Interface connection from V2X communications simulation environment to storage service

The aim of this integration was to serve a specific scenario with vehicular communications and record all
the messages that are being sent and received along the simulation. A scenario with the SUMO simulator
containing different number of vehicles was created, and this simulation was connected to OMNeT++
which will translate the vehicles into nodes and send CAM messages from each vehicle to all its neigh-
bours.

Therefore, the objective is to collect all the CAM messages transmitted in a simulation and store them in
an external storage service. That would be highly beneficial since some simulations can be really large

Final Version of CPSoSaware integrated platform

57

(with lots of vehicles or for an extended period of time) and the amount of data generated needs to be
sorted and stored efficiently.

5.2.1.1 Dataset creation

First, the information from all the CAM messages of the simulation was needed. So, for each vehicle of
the simulation, the time when it sends or receives any message is detected, and at that instant, its infor-
mation will be dumped into a CSV file. Therefore, at the end of the simulation, each vehicle will have two
files, one with all the messages sent by that vehicle, and one with all messages that it has received.

The name of the resulting files contains the OMNeT++ ID of the vehicle and the type of message stored
(sent or received). An example of a “sent” and “received” file could be ”684174695_sent.csv” and
”684174695_received.csv” respectively.Also, these files store some of the most relevant parameters of
the CAM messages, which can vary depending on the type of message:

● Sent file. The name corresponds to the transmitter vehicle’s ID:

Table 5 Parameters stored in a “sent” file

Sent Time Internal CAM reference time in milliseconds [ms]

Simulation Time Simulation time when the message is sent in seconds [s]

Origin Latitude Transmitter vehicle position (geographic coord.): Latitude

Origin Longitude Transmitter vehicle position (geographic coord.): Latitude

X Transmitter vehicle position (cartesian coord.): X-axis, horizontal

Y Transmitter vehicle position (cartesian coord.): Y-axis, vertical

● Received file. The name corresponds to the receiver vehicle’s ID:

Table 6 : Parameters stored in a “recieved” file.

Station ID ID of the transmitter vehicles

Sent Time Internal CAM reference time of the sent message in milliseconds [ms]

Received Time Internal CAM reference time of received message in milliseconds [ms]

Final Version of CPSoSaware integrated platform

58

Received Simulation Time Simulation time when the message is received in seconds [s]

Origin Latitude Transmitter vehicle position (geographic coord.): Latitude

Origin Longitude Transmitter vehicle position (geographic coord.): Latitude

Destiny Latitude Receiver vehicle position (geographic coord.): Latitude

Destiny Longitude Receiver vehicle position (geographic coord.): Latitude

Destiny X Receiver vehicle position (cartesian coord.): X-axis, horizontal

Destiny Y Receiver vehicle position (cartesian coord.): Y-axis, vertical

5.2.1.2 Send datasets to the database

Since all the files are generated, a way for sending them all to the database was needed. Thus, the imple-
mentation of a ROS interface that will read all the CSV files and send its information to the storage service
was needed.

ROS was chosen because it is a standard method to interact with other simulators (such as OMNeT++ and
CARLA), and it allows to send data to external applications like this database. ROS follows a structure of
nodes that can publish information into a topic, or subscribe to them, and is orchestrated with a ROS
Master.

For this service two clients were implemented, a publisher and a reader:

• Publisher: It is responsible for publishing the CAM messages to the ROS master specifying differ-
ent topics for each type of message (Sent and Received). It is able to publish data already gener-
ated and stored in a CSV file or to publish the data when it is generated in the simulation at the
instance of sending and receiving a message. To publish the data stored in a CSV file, it reads the
file and splits the information into lines which publishes afterwards. In the case of publishing the
data when the simulation is running, it waits for the triggers of sending or receiving a message to
publish it.

• Reader: This client has another ROS node that will read all the messages sent to the ROS master
by the previous client and then it will publish them into the storage service.

The main reason for using this system is that the publisher and the reader clients can be executed from
different computers. The publisher corresponds to the machine that has run the simulation and has all

Final Version of CPSoSaware integrated platform

59

the generated CSV files. The reader client needs to be executed from a machine that must have access to
IBM's database.

Finally, in order to publish the messages into the storage service, the reader node needs to follow the
following steps:

1. Access the database web from IBM9

2. Introduce the credentials to authenticate the account username: aa, password: aa

3. The information is stored as a JSON file, with the following namespace = “cars_data”

• And last, the messages will be stored in different directions based on the indicated topic: Sent
Topic10, Received Topic11

5.2.2 Interface connection from V2X communications simulation environment to ISI location
improvement simulator

The collaboration between i2CAT and ISI was aimed to feed the ISI location improvement algorithms with
more realistic data gathered from the V2X messages. The objective of this integration is to create a simu-
lation on CARLA, which will use the Local Dynamic Map (LDM) data to improve the vehicle location. So,
the data from the LDM will be generated on OMNeT++, and then used in CARLA for the location improve-
ment.

In order to do so, we have set a common scenario, specifically the Town05 map provided by CARLA simu-
lator. We have used and modified this scenario in SUMO (creating a customized simulation with 25 vehi-
cles) and fed the OMNeT++ simulation with it, this way, being able to simulate the transmission of mes-
sages between vehicles.

Afterward, once the OMNeT++ simulation has finished, we can collect all the parameters extracted from
the sent and received CAM messages, and combine them into a global CSV file with the LDM’s of all the
vehicles.

9 https://CPSoSAWAREeu.draco.res.ibm.com/CPSoSAWARE -SAT/integration/1.0.0/auuthenticate

10 https://CPSoSAWAREeu.draco.res.ibm.com/CPSoSAWARE-SAT/integration/1.0.0/namespaces/cars_data/classes/
sended_updated/schemas/aa/data/all

11 https://CPSoSAWAREeu.draco.res.ibm.com/CPSoSAWARE-SAT/integration/1.0.0/namespaces/cars_data/classes/
recived/schemas/aa/data/all

Final Version of CPSoSaware integrated platform

60

5.2.2.1 Dataset creation

The generation of the dataset is performed during the simulation. Every time a vehicle receives a message
from any neighboring vehicle it stores the information in a new line of the database. But there are some
parameters that need to be obtained each time a message is sent (not received), so these ones are col-
lected during the simulation, and once it’s finished will be added to the previous file, generating a com-
plete dataset with all the LDM’s parameters. The database is recorded in CSV format, and each entry has
the following parameters:

Table 7: Parameters stored in the Local Dynamic Map (LDM)

LDM of the vehicle SUMO Identifier of the vehicle receiving the message.

LDM Simulation Time Time in which the LDM of the vehicle has been updated. Correspond-
ing to the last received CAM. Units: seconds.

Vehicle Identifier SUMO Identifier of the vehicle sending the message.

Generated time
Time of the simulation in which the message has been generated by
the sender vehicle.

Received time Time of the simulation in which the message has been received.

Position X SUMO cartesian coordinate X of the sender vehicle.

Position Y SUMO cartesian coordinate Y of the sender vehicle.

Speed X Speed on the X axis of the sender vehicle in m/s.

Speed Y Speed on the Y axis of the sender vehicle in m/s.

Acceleration X Acceleration on the X axis of the sender vehicle in m/s².

Acceleration Y Acceleration on the Y axis of the sender vehicle in m/s².

Final Version of CPSoSaware integrated platform

61

This database contains the LDM's of all the vehicles in the simulation. To obtain the LDM for a specific
vehicle, the file just needs to be sorted by the parameter "LDM of the vehicle" with the name of the
desired vehicle.

5.3 Real Vehicle Environment

For the real vehicle demonstrator of the automotive Pilot, multiple modules (Figure 31) have been devel-
oped and integrated corresponding to all 3 phases of the automotive Pilot namely:

• Sense
• Understand
• Act

Figure 31: Modules Integrated on CPSoSAWARE platforms.

The integration framework engaged on the real vehicle is a ROS-like framework. The fundamental entities
of the framework are: (a) nodes, (b) messages, (c) topics, and (d) services. Nodes are processes that per-
form computation. The framework is designed to be modular at a fine-grained scale. The use of the term
“node” arises from visualizations of ROS-based systems at runtime: when many nodes are running, it is
convenient to render the peer-to-peer communications as a graph, with processes as graph nodes and
the peer-to-peer links as arcs. Nodes communicate with each other by passing messages. A node sends a
message by publishing it to a given topic, which is simply a string such as “odometry” or “map.” A node
that is interested in a certain kind of data will subscribe to the appropriate topic. There may be multiple
concurrent publishers and subscribers for a single topic, and a single node may publish and/or subscribe
to multiple topics.

Final Version of CPSoSaware integrated platform

62

CPSoSAWARE involves delivering results on Car-PC, Drive Px2, Raspberry Pi and Texas Instruments TDA2X

as illustrated on

Figure 32.

Figure 32: Integration Platforms

5.4 Cybersecurity in connected vehicles

CPSoSAWARE tackles the cybersecurity challenges in connected vehicles from the sensor and communi-
cation layers as well. The involved CPSoSAWARE components and their interactions are depicted in Figure
33 and discussed in more details in Sections 5.4.1, 5.4.2 and 5.4.3 that follows.

Final Version of CPSoSaware integrated platform

63

Figure 33: Cybersecurity components and interactions

5.4.1 Sensor Layer

The automotive sector is going through a significant development trend regarding autonomous driving.
Sensors, communication systems, actuators, etc., are some of the components becoming more and more
common in vehicles due to this. This has led to more complexity, which has increased the number of ways
cyber-attacks can occur. This leads to attackers having access to the vehicles from outside. Several secu-
rity-related projects have been conducted as a result of these concerns. Bold initiatives are being taken
by technology giants, automobile manufacturers, and governments all over the world to build safer and
more affordable AVs and bring them to market quickly. Cooperation is essential for tackling the issue of
cybersecurity. Table 8 summarizes the scenarios usecases explored during the CyberSecurity Demonstra-
tors of CPSoSAWARE.

Table 8: Attack scenarios for the real vehicle demo as presented in deliverable D6.2 [24]

Use Cases- CyberSecurity Use Case

1

Attack on the Camera Sensor Layer: This scenario would involve a cyber-attack based on activating some malicious software which
got installed during the software update process. Throughout this use-case the camera sensor could be attacked in a number of
different ways, which could vary between adding noise lying on specific bands of the frequency spectrum/ introducing morpholog-
ical deformations/ on the whole or parts of the image.

2

Attack on the Camera Sensor Layer by de-synchronizing the data: Throughout this scenario, the cyber-attack will be geared towards
disturbing the association between the captured frames and the timestamp assigned to them. This will cause the failure of the
perception engine, as all the architectural modules performing stochastic filtering on the scene observations will be affected by
error. This use case should study the potential and the limitations of the cyber-attack detection and mitigation engine in assessing
and recovering the failures.

Final Version of CPSoSaware integrated platform

64

3

Attack on the Camera Sensor by a remote agent: In addition to the scenario, the cyber-attack detection and mitigation engine will
be used to detect and mitigate the camera signal distortion in the case that a malicious remote agent interferes with the test
vehicle by knowing the IP of the processing unit and sharing some erroneous data. More specifically, this use case will assume that
the remote agent sends via V2X communication: time zone/ daylight related data in order some sensor parameters (e.g.: gain/ex-
posure time) to be tuned accordingly.

The demo scenarios executed as part of automotive use case demonstrations involve a malicious user
holding a remote control through which it attacks to the sensors data, disturbing both the quality of the
sensor signal and the timestamps of the data recorded. As illustrated in Figure 34, the scene is perceived
while a malicious user attacks to the vehicle sensors to degrade the scene understanding output. After
the pre-processing and perception phase, the cyber attacks are detected and classified.

Figure 34: Phases of Cyber-attack detection, classification and mitigation for the automotive pilot

The types and the scenarios of the attacks were defined in D2.2 deliverable contributed by CPSOSAWARE’s
consortium at the beginning of the project and is also presented in Figure 34 above.

The scenarios presented in Table 8 were used to investigate the potential and limitations of the cyber-
attack detection and mitigation engine across a wide range of perception functions related to:

• Moving Object Detection

• Self-Localization

• Occupancy Grid Mapping/ Object Boundaries Definition

• Fully autonomous parking.

Final Version of CPSoSaware integrated platform

65

The number and the extend of perception engine components tested, exceeded the initial planning as this
was specified in Wp2, WP3 and WP4. More specifically, while in the aforementioned work packages it was
planned to have the cyber-attack detection and mitigation engine tested only for use cases (1) and (4), we
finally tested it across perception components related to object detection, navigation and automated
parking. The modules involved in the attack scenarios are enclosed in the orange segment of Figure 35.

Figure 35: Perception Components involved in the cyber attacks of the automotive pilot

5.4.2 Communication Layer

As far as the communication layer is concerned, it basically offers two external interfaces used by the
service stakeholders to publish and to be notified about certain events. These interfaces expose methods
to interact with a set of MQTT brokers, one located on the OBU (On-Board Unit) and another one located
all the way up at the Edge Node, providing enablers for communication between the CPS Layer and the
Edge Layer.

The communication between the OBU and the RSU (Roadside Unit) is done using the ETSI ITS-G5 V2X
communications protocol architecture using the GeoNetworking protocol, the Basic Transfer Protocol
(BTP) and the IEEE 802.11p as access layer.

The IEEE 802.11p enables communications Vehicle-to-Infrastructure (V2I) and Vehicle-to-Vehicle (V2V).
The testbed uses this second characteristic to send messages directly between OBUs with a broadcast
approach. In order to signal if a message has to use a V2I or V2V link, the transmitter OBU uses a specific
selector in the message.

Final Version of CPSoSaware integrated platform

66

All these communications are enabled by the so called V2XCOM module, which handles the vehicular
communications between the involved entities. The V2XCOM module in deployed in the OBU, in the RSU
and in the Edge Node.

The architecture of the module is depicted in Figure 36.

Figure 36: Architecture of the V2XCOM module

The module connects with the SRMM modules through MQTT queues.

The module publishes to the following queues:

• alarm/receive: The received alarms are published into that queue.
• event/receive: The received events are published into that queue.

The queues to subscribe depending on the needs are the following:

• alarm/+/main: The payload sent through MQTT is sent with Geonetworking Single Hop Broad-
casting (SHB) and BTP 5001 port. The alarm is only received by RSU.

• alarm/+/sub: The payload sent through MQTT is sent with Geonetworking SHB and BTP 5002 port.
The alarm is only received by the OBUs.

• event/+/main: The payload sent through MQTT is sent with Geonetworking SHB and BTP 5003
port. The event is only received by RSU.

Final Version of CPSoSaware integrated platform

67

• event/+/sub: The payload sent through MQTT is sent with Geonetworking SHB and BTP 5004 port.
The event is only received by the OBUs.

The methods used to interact with the queues are:

Subscription to a topic:

Publishing to a topic:

Where:

• type: event | alarm.
• source: SRMM name.
• destination: main | sub: with this selector the OBU can send the messages directly to the RSU

(main) and from there to the Edge Node, or to broadcast (sub) to nearby OBUs.

5.4.3 Security runtime and monitoring management

As described in the previous deliverable D5.2 [25], Security Runtime Monitoring and Management
(SRMM) system is the main component of the Cybersecurity Layer, developed by the Task 4.3 - CPSo-
SAWARE Security Runtime Monitoring and Management. It monitors the entire system, receiving security
events through the Sensor Layer, to identify possible threats and divergent behaviours arising from attacks
against the system. Due to the dynamic architecture and the possible loss of communication between the
different components of the system, the SRMM is a distributed component with several instances in dif-
ferent parts of the systems. For the use case of Connected and Autonomous Vehicles, worked out in the
context of WP6, we have deployed three types of SRMMs:

• Light SRMMs: Deployed inside vehicles, they are the lowest in the hierarchy. They perform the
local intelligence despite a limited computing capacity, allowing system to maintain service even
if vehicles lose connection to the edge. Their alarms are sent to Area SRMMs.

• Area SRMMs: These are in a physical area, such as a road or a street. They receive security events
from Area sensors and alarms from Light SRMMs. They perform the area intelligence, raising area
alarms that are communicated to Global SRMM and all Light SRMMs within the area.

mosquitto_sub -h <Ip of the broker> -p 8883 -t "<type>/receive"

mosquitto_pub -h <Ip of the broker> -p 8883 -t <type>/<source>/<destination>

-m "<Raw message>"

Final Version of CPSoSaware integrated platform

68

• Global SRMM: it is placed in the cloud, which has an overview of the entire system. It receives
alarms from area SRMMs and global events to perform general intelligence, by broadcasting
alarms to all area SRMMs.

All SRMM types have the same functionalities: receive events and alarms, raise and send alarms and
execute mitigation actions. The only difference is the number of detection rules that each can manage
and the target of these rules.
Communication between the different SRMMs use the MQTT protocol to send raw messages. This service
is already presented previously in Section 655.4.2. To use it, the SRMMs serialize their internal structures
and send to other SRMMs as raw messages.

As input method, the SRMM receives events from the Sensor Layer which are then correlated to generate
the alarms. The system has three methods for obtaining these messages:

• API: SRMMs open a TCP connection, by default in port 41000, to accept messages in the format
which was presented in deliverable D4.8 [26], Section 3.3.2 and is reflected here for convenience
(userdata fields are optional):

Figure 37 Security Event Format

• Agent: A subsystem of the SRMM to monitor raw logs from rsyslog service, described in detail in
deliverable D3.5 [27], in Section 5. This component parses logs from the different sensors and
send security events to the above API. A plugin is defined for each sensor for which the Agent
identifies their events. This plugin is a file with the log path, a regular expression for each raw log
to be identified, and the relationship between the subexpressions and the fields of the security
events.

"a": {“type”: <string>, "userdata5": <string>,

"date": <string>, "userdata6": <string>,

"device": <string>, "userdata7": <string>,

"interface": <string>, "userdata8": <string>,

"plugin_id": <integer>, "userdata9": <string>,

"plugin_sid": <integer>, "log": <string>,

"src_ip": <string>, "fdate": <string>,

"dst_ip": <string>, "tzone": <string>,

Final Version of CPSoSaware integrated platform

69

• RabbitMQ: A message broker service to receive security events from external sensors. These
messages must be in JSON format with the same structure that the API messages.

When a sequence of security events matches one of the rules that the SRMM system has configured, it
raises an alarm which is the output method of the system. To display the raised alarms and their related
information, the system has two methods:

• Dashboard: It is a web interface with a set of views that display real-time incident information,
such as number of events or alarms, Fig. 9; the dashboard also allows consulting the list of alarms,
Figure 38; and the details of each alarm,Figure 40.

Figure 38: Dashboard

Final Version of CPSoSaware integrated platform

70

Figure 39: List of alarms

Figure 40: Detail of an alarm

Final Version of CPSoSaware integrated platform

71

• RabbitMQ: Where a third part service can subscribe to a queue to receive the alarm produced
by SRMM. The alarm uses a JSON structure, Figure 41 (already presented in D4.8 [26], section

3.3.4).

Figure 41: Alarm JSON format

{"Alarm": {

 "DST_IP_HOSTNAME": <string>,

 "RELATED_EVENTS": <string>,

 "DST_IP": <string>,

 "PLUGIN_NAME": <string>,

 "SRC_IP": <string>,

 "PRIORITY": <integer>,

 "RELIABILITY": <integer>,

 "SUBCATEGORY": <string>,

 "USERDATA3": <string>,

 "USERDATA4": <string>,

 "PLUGIN_SID": <string>,

 "USERDATA1": <string>,

 "USERDATA2": <string>,

 "ORGANIZATION": <string>,

 "CATEGORY": <string>,

 "PLUGIN_ID": <string>,

 "USERNAME": <string>,

 "FILENAME": <string>,

"BACKLOG_ID": <string>,

"RELATED_EVENTS_INFO": {List of <Event>},

"PROTOCOL": <integer>,

"RISK": <integer>,

"SRC_PORT": <integer>,

"SENSOR": <string>,

"SRC_IP_HOSTNAME": <string>,

"SID_NAME": <string>,

"USERDATA7": <string>,

"DATE": <string>, YYYY-mm-dd HH:MM:SS

"USERDATA8": <string>,

"USERDATA5": <string>,

"USERDATA6": <string>,

"PASSWORD": <string>,

"USERDATA9": <string>,

"DST_PORT": <integer>,

"EVENT_ID": <string>}}

Final Version of CPSoSaware integrated platform

72

In addition, the SRMM can associate actions to alarms as a mitigation method. There are three types of
actions: Send an email, Figure 42, which is a notification that could initiate a manual mitigation method
because it is a user who has to receive such an email and initiate the mitigation of the attack. Open a ticket
in another program, which may or may not initiate mitigation actions. Or execute a program or script, a
command, Figure 43, that initiates mitigation actions automatically, without human interaction. In
addition, several actions can be associated to the same alarm.

Figure 42: Email notification

Final Version of CPSoSaware integrated platform

73

Figure 43: Action associated to an alarm

Finally, there is a configuration panel, integrated with the alarm interface, which allows creating and ed-
iting correlation rules and cross-correlation rules, registering new sensor devices, or configuring mitiga-
tion actions Figure 44.

Figure 44: Rule configuration interface

Final Version of CPSoSaware integrated platform

74

5.5 Human in the loop system

Human in the loop use case concentrates on the cooperation between the vehicle systems and the human
driver. In some situations, like more demanding road conditions, Autonomous Driving Systems (ADS),
when incapable of handling the situation in an automatic way, need the human driver to take over control
of the vehicle. However, to conduct the transition of control properly and safely, the driver must be fit to
continue the task of driving. For that purpose, the Driver State Monitoring System (DSM) is a necessarily
in-vehicle component that should constantly monitor the driver’s availability. Another reason for DSM
implementation is the detection of safety-critical states that can impact driver’s capabilities, resulting in
accidents. Misdirected attention and fatigue/drowsiness are among the most significant factors related
to road events. As such, they were the main focus of the Human in the Loop use case and driver state
monitoring in the CPSoSAWARE project.

5.5.1 Integration Environment

The DSM solution used in the project was developed by Catalink as an Android application that allows to
monitor and assess the driver’s state, like distraction and drowsiness, in real time. In order to do so, the
application uses the front camera of the smartphone and allows for monitoring the general status of the
driver and estimating driver’s fatigue level throughout the drive.

The estimations are based on utilising Google’s ML Kit12, a standalone library offering the possibility of
on-device machine learning processing. ML Kit allows for the integration of machine learning capabilities
into an application by exposing the so-called vision APIs. In the case of the DSM application, ML Kit was
used to achieve a fast, efficient, and real-time face recognition and facial landmarks extraction.

The application detects the following features related to driver drowsiness and inattention and generates
an alert when they are detected (as can be seen in Figure 45):

• Eye closures,
• Yawning,
• Distraction.

12 https://developers.google.com/ml-kit/

Final Version of CPSoSaware integrated platform

75

Figure 45: Result of the “Eye closure” scenario. (b) Result of the “Yawning” scenario. (c) Result of “Distraction”
scenario. Source: Catalink

The application saves data in JSON files containing information about Unique Session ID, Session
Timestamp, Unique Frame ID, Frame Timestamp, the frame number, the number of the detected faces in
the frame, if the driver is yawning or has his/her eyes closed in this frame, if he/she is looking left/right or
has his/her hands off the wheel, and finally if the alert was fired. The content of the JSON file allows for
deep analysis of the application’s functionality and accuracy of the state detection, as was done in the
tests conducted in the project.

A detailed description of the application and its functionality can be found in Deliverable D6.2 - Small scale
evaluation trials [28].

5.5.2 Runtime evaluation

In the scope of the project the overall performance of the DMS application was tested, both in terms of
driver state validation and UX perspective. For that purpose, a study on 8 participants was conducted,
resulting in collecting a dataset with video sequences and JSON files, utilizing two different smartphones
and an interior dash camera.

Final Version of CPSoSaware integrated platform

76

The study included naturalistic driving, and static scenarios based on Euro NCAP testing recommendations
for distraction testing13. The application’s functionality was also tested under laboratory conditions for
the detection and recognition of certain events and actions in predefined use cases in order to assess the
UX-related aspects of performance.

Testing equipment included:

• Tested DMS solution,
• Heart rate monitoring (with a wearable device integrated with the DSM application),
• Contextual cameras (as an additional source of visual information),
• Test vehicles (each participant had been driving their own, or familiar to them, vehicle).

Every session involved the use of two phones, each having the DSM application installed, and with its
frontal camera directed towards the driver. One of the smartphones was placed in the instrument cluster,
and the other one in the participant’s chosen position, which, according to personal preferences, was
either a windshield under the rear mirror (Position A), or infotainment (Position B). The positions are pre-
sented in Figure 46.

Figure 46: A schematic representation of a dashboard in an average car with phones’ positioning during test drives.
Source: Robotec.ai.

13 European New Car Assessment Programme (Euro NCAP). (2022). Assessment Protocol — Safety Assist Safe Driving.
Implementation 2023. Version 10.0.1.

Final Version of CPSoSaware integrated platform

77

Every participant performed a series of static testing sequences, as described in the abovementioned Euro
NCAP protocol. The sequences included gazes toward different objects inside the car cabin and in the
outer environment and were split into three groups: long-duration gazes, frequent and short-duration
gazes, and gazes toward the phone. For every participant, the static scenarios were followed by a natu-
ralistic driving part, which involved urban and expressway roads.

The application also underwent testing in a laboratory environment, which provided controlled conditions
for testing the application’s performance in specific use cases. It was meant to check how the application
worked outside the context of driving and without the noise inherent to it (like drastic and rapid light
changes or shocks caused by driving on uneven surfaces). Detailed descriptions of the testing methodol-
ogy and a list of sequences done are provided in D6.5 [2].

A simple analysis was performed on the data to summarize the application performance. For a proper
analysis, a synchronization of output JSON files, DSM application’s recordings, and interior contextual
camera recordings was performed. Selected variables were then processed and plotted together in order
to visualize and further qualitatively discuss the obtained outcomes. The results can be found in D6.5 [2].

Following the performed analysis, the application, being now under development, can be considered as
working properly in a controlled environment. The real road tests pointed out the directions in which the
DSM application can be further improved to fit users’ needs and convenience (e.g., the use of IR camera,
if available, working in the background). However, even without these improvements, it still can be char-
acterized as largely correctly recognizing some visual signs of drowsiness, such as closing eyes and yawn-
ing, and signs of distraction, such as turning the head away from the driving direction. As such, the tested
DMS application is a valid component of the CPSoSAWARE project. After further upgrades, it also gives a
great opportunity to promote the idea of driver monitoring among casual users and help to understand
the mechanisms behind it.

Final Version of CPSoSaware integrated platform

78

5.5.3 Multi HW Implementation Platforms

Figure 47: Multi HW implementation components

In the context of the automotive pillar, UoP has developed two use cases to demonstrate the progress on
multi hardware implementations. Aconvolutional neural network (CNN) use case is based on PoCL with
AlmaIF interface while the Driver State Monitoring (DSM) is based on a non-PoCL environment. The im-
plemented components as presented in Figure 47 and their integrations are described in the following
section.

5.5.3.1 CNN Use Case

For the purposes of “TC2.3.1 ML Hardware Accelerator IP Cores”, the SqJ accelerator is used for the ac-
celeration CNNs performing the image recognition task. SqJ is a convolutional and maxpool layer acceler-
ator implemented as a single IP core described in Vitis HLS. It is implemented as a single computation
engine by accelerating CNN layers in a time-shared manner. It can be called by software programs running
on the operating system of the host side of a system-on-chip, which includes a processing system (e.g. an
ARM CPU) and a programmable logic system (e.g. an FPGA). In this way, a software program, running on
the processing system of a system-on-chip, can accelerate CNN inference by offloading the CNN convolu-
tion and max-pool operations to the programmable logic where the SqueezeJet accelerator is running.

In TC2.3.1, a software program which performs image recognition will be presented. Specifically, labelled
images from the ImageNet validation dataset will be provided as input to the program and the program

Final Version of CPSoSaware integrated platform

79

will output a prediction regarding the input image. The CNN used for the purposes of this TC is the
SqueezeNet v1.1 CNN.

In order to take advantage of the arbitrary precision characteristic of the FPGA, the SqueezeNet v1.1 CNN
model is quantized from floating-point to 8-bit signed integers using the Ristretto tool without hurting the
image recognition accuracy. In this way, the CNN model is compressed, and the CNN layer parameters can
fit into the FPGA on-chip memory.

The SqueezeNet v1.1 inference will be executed on both the ARM processor and the FPGA of the Zynq
system-on-chip14 FPGA to showcase both the prediction accuracy and the acceleration achieved by using
the SqJ accelerator compared to the ARM-only execution.

Input: Image, CNN weights.

Output: Classification prediction.

In the context of “TC2.3.3 Model transformation to OpenCL”, high-level synthesis kernels are developed
and integrated to the PoCL FPGA accelerator. These kernels perform simple operations such as vector
addition and multiplication, as well as more complex ones, such as CNN convolution and fully connected
layers’ operations.

For the purposes of this TC2.3.3, a sign recognition CNN model has been trained and quantized and can
be executed using PoCL and the PoCL FPGA accelerator. A software OpenCL program can be used to pre-
sent the programmability offered by the PoCL accelerator, by executing the different CNN layers by se-
lecting the required kernel for each CNN layer execution.

In the sign recognition CNN example, an OpenCL application uses the PoCL FPGA accelerator to execute
the convolutional and the fully connected CNN layers by selecting each time the appropriate kernel. In
this way, the sign recognition CNN model is transformed to an FPGA accelerated OpenCL application.

Input: sign recognition CNN model.

Output: OpenCL application.

For “TC5.1.1 HLS-based SW to HW transformation” High-Level Synthesis implementation of the AlmaIF
interface allows the development of PoCL applications which offload computation kernels to the program-
mable logic of an FPGA system-on-chip.

14 https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html

Final Version of CPSoSaware integrated platform

80

CNN computation kernels are transformed to High-Level Synthesis descriptions and are used as PoCL FPGA
accelerated kernels.

For the purposes of this TC5.1.1, the SqJ accelerator is used as a PoCL kernel which accelerates CNN ap-
plications, such as the image recognition task of the ImageNet images using the SqueezeNet v1.1 CNN
model.

Additionally, for this TC, the AlmaIF interface is complemented by streaming interfaces which are required
for the acceleration of CNN applications. A PoCL FPGA accelerated application will be using the PoCL FPGA
accelerator to accelerate the SqueezeNet v1.1 CNN layers.

Input: CNN computation kernels.

Output: High-Level Synthesis descriptions compatible with PoCL FPGA acceleration and AlmaIF interface.

5.5.3.2 DSM Use Case

Figure 48: DSM components

The profiling of the source code of the DSM use case (“TC4.1.2 Profiling”) was performed at various levels
(application level, HLS estimations, XRT real time profiling). The source code routines or code chunks in
general served as input to the TC4.1.2 component and the measured timing information was the output
for each one of the profiled routines. More specifically, in top software level, the start and end time of
the following code segments was recorded to extract their average latency:

UoP-T4.1
UoP-T2.3

UoP-T4.1

UoP-T5.1

UoP-T2.4, T3.6, T4.1

Application
Code chunks

Code chunk associated
with profile results (la-
tency)

Code chunk implementation
in HW features: latency, re-
sources, power consump-
tion

Bitstreams for HW imple-
mentation of code chunks

UoP-T5.???

Bit streams with
OpenCL interface

ERT models

UoP-T5.???

- Sensor Indications HW kernels

Final Version of CPSoSaware integrated platform

81

a) Frame read

b) OpenCV library call to detect the driver’s face bounding box

c) Bounding box coherency rules

d) Landmark position prediction (Kernel_predict() routine)

o Argument passing

o Similarity Transform

o Read pixel intensities

o ERT cascade stage loop (ERT regression trees loop (Predict_trees() routine) / Single
regression tree processing)

e) Return of the landmark position correction factors

f) Update landmark position with correction factors

g) Final landmark position coherency rules

h) Update driver drowsiness parameters (EAR/MAR, PERCLOS and counted yawnings, sleepy eye
blinks)

i) Draw output frame with updated landmarks and information about drowsiness parameters

The top-level application repeats the following steps: it retrieves a frame from the opened input stream
(a). Then, OpenCV library is called to find the bounding box coordinates where the face exists (b). In the
final version of the DSM module developed by UoP, coherency rules on the bounding box are applied as
a next step (c) to reject false OpenCV bounding box estimations (e.g., bounding box of invalid size or in
invalid position). Then, the landmark prediction function takes place in (d). In the original DEST source
code, the ERT model parameter values were accessed when needed. In the hardware-friendly version that
the UoP ported to Ubuntu environment all the functionality of (d) was included in the Kernel_predict()
routine that needs all the ERT model parameters to be passed as arguments. This function also
incorporates the following subfunctions: Similarity Transform warps the landmark shape to match the
specific face in the bounding box and then, the intensities of specific frame reference pixels are read
before the cascade stages of the ERT model are executed to correct the mean landmark positions that re
read from the ERT model. In each cascade stage, many regression trees are visited and in each regression
tree, the intensity of a pair of reference pixels is compared to decide the next node in the tree that will be
followed and the next pair of pixels that will be compared. When a leaf is reached in the regression tree
the corresponding landmark position correction factor vector is selected.

Final Version of CPSoSaware integrated platform

82

In the original open-source version of the Deformable Shape Tracking (DEST) package video tracking
application, that was initially ported to Ubuntu OS in order to perform the top-level profiling, the
functionality of code segments (c), (g) did not exist while in (h) only landmarks were drawn. Moreover,
the functionality of (d) and its subroutines was entirely based on Eigen math library calls. The profiling of
the original DEST video tracking application highlighted that 80% of the frame processing time was spent
on (d). The absolute latency of (d) as measured on an Intel i5 platform was 116ms. This fact forced UoP to
replace time consuming Eigen library calls with fast C code that could also be ported to reconfigurable
hardware.

This Eigen library call replacement in (d) accelerated the frame processing latency by more than 240 times
since it was reduced below 0.5usec on the same platform. Although UoP initially ported all the
functionality of the Kernel_predict() routine (d) in hardware, resource estimations and a new profiling of
the subroutines of (d) showed again that 80% of the Kernel_predict() latency was spent on Predict_trees()
which is called within Kernel_predict() once for each ERT cascade stage. Therefore, the porting of
Predict_trees() in hardware was selected leaving in software the code of the routines that performed the
Similarity Transform and the pixel intensities reading since these routines are complicated but do not have
iterative operations and thus, they consume a large number of resources if implemented in hardware.

The latency, resources and power consumption of the hardware implementations of the Kernel_predict()
and Predict_trees() hardware kernels depends on various parameters of the ERT model (number of
cascade stages, regressor trees and tree depth, reference pixels, etc). UoP has trained a number of
different ERT models that differ in these parameters and are appropriate for different environmental
conditions. Each one of these models has a different hardware kernel counterpart to implement its time
consuming operations such as Kernel_predict() and Predict_trees(). The profiling of these alternative
hardware kernel implementations has been performed in Vitis High Level Synthesis (HLS) tool, to
accurately estimate the minimum and maximum latency in clock cycles, the resources allocated for these
implementations and their power consumption.

Input: DSM C code chunks.

Output: Utilisation, measured latency of the code chunks, required memory and power consumption,
resources (if implemented in hardware).

The output of the TC4.1.2 Profiling component is the list of the code chunks that were used as input to
this module accompanied with a latency characterization. Specifically, the name of a subroutine can be
accompanied with one or more latency metrics. As described in TC4.1.2 these latency metrics can include
absolute time as was the 116ms required by the initial landmark prediction routine of the DEST video
tracking application or a percentage (80%) of the time required e.g., for processing a single frame. Based
on these latency metrics the routines that are candidates for hardware implementation such as the Ker-
nel_predict() or the Predict_trees() are selected. The system starts with an all-software solution and all
the code is developed e.g., in C/C++. The hardware candidates, however, should be described in a C/C++
style that is friendly to hardware synthesis. The component that transforms a C/C++ description in

Final Version of CPSoSaware integrated platform

83

hardware is the “TC5.1.1 HLS-based SW to HW transformation”. In the DSM module developed by UoP,
Xilinx Vitis HLS and Vivado HLS tools were employed to perform the hardware synthesis. Since various
alternatives for the hardware implementation of a process had to be investigated the output of TC5.1.1 is
the list of (code chunk, latency) pairs extended with other features that can be estimated by HLS such as
the resources allocated by the implementation of each chunk and its power consumption.

Input: List of (code chunk, latency) pairs

Output: list of (code chunk, latency, resources, power consumption) tuples

The HLS tool of TC5.1.1 except from estimating resources, power and latency of the routines that are
candidates for hardware acceleration, also synthesizes the actual hardware IP cores. These cores are the
implementation of the most computationally intensive parts of the ERT model processing. As described in
TC4.1.2, several alternatives of the ERT Machine Learning model have been trained in the DSM use case.
These models are accelerated by hardware IP cores that have different number of resources, power con-
sumption, latency and achieve a specific accuracy under various environmental conditions (driver gender,
features, light exposure of the camera images, etc). In other words, a different tradeoff is achieved be-
tween speed and cost in each one of the alternative ERT models and their corresponding hardware IP
cores. Each hardware IP core is represented by an FPGA configuration bitstream in Xilinx Vitis, and this is
the output of the “TC2.3.1 ML HW Acceleration IP cores” component

Input: list of (code chunk, latency, resources, power consumption) tuples

Output: Bitstreams for HW implementation of code chunks

The bitstreams generated by the TC2.3.1 component must be invoked through OpenCL commands. These
commands initially detect the hardware platform i.e., the FPGA ZCU102 board of the DSM module and
then initialize a command queue. The kernel arguments are then loaded on this queue and the kernel is
initiated. The command queue can be blocked by OpenCL waiting for the kernel results to be available
and transferred back to the top-level software that called the hardware kernel. The OpenCL wrapper
(“TC4.1.1 OpenCL Wrapper for HW Cores”) should be aware of the routine name of the kernel that is
implemented in hardware as well as its input/output arguments and types.

Concerning the specific DSM application, the Kernel_predict() routine required 21 arguments with 14 of
them being large buffers since all the ERT model values should be available to the kernel. These buffers
are prepared in an initialization routine (predict_prepare()). The Predict_trees() kernel requires only 4
medium sized buffers since it is called in each cascade stage with only the arguments that concern this
specific stage. In an accelerated version of the Predic_trees() kernel, 3 of the 4 buffer arguments are split
in pairs of buffers with half size, in order to increase parallelism in the processing and reduce the transfer
latency.

The full list of the kernel arguments used in the DSM module is the following:

Final Version of CPSoSaware integrated platform

84

void predict_kernel(int kr_maxTreeSizes,

 int kr_numCascades, // Input. Number of cascade stages

 int kr_meanShape_cols, // Input. Number of landmarks

 int kr_irows, // Input. Rows of the input frame

 int kr_icols, // Input. Cols of the input frame

 unsigned char *kr_img, // Input. Start pointer of the input frame

 int * kr_treeSizes, // Input. Size of the regressor trees

 float * kr_meanResiduals, // Input+Ouput. Updated mean residuals (accumulated correction factors)

 int * kr_Global_node_split1, // Input. Next node of the regressor tree (left direction)

 int* kr_Global_node_split2, // Input. Next node of the regressor tree (right direction)

 float* kr_Global_node_thres, // Input. Thresholds in regressor tree nodes to select left or right direction)

 float* kr_Global_node_mean, // Input. Correction factors for the landmark coordinates

 float* kr_learningRates, // Input. Forgetting factor (can be constant)

 float * kr_meanShapes, // Input+Output. Updated landmark coordinates

 float *kr_shapeRelativePixelCoordinatesX, // Input. Reference pixels coordinate X

 float *kr_shapeRelativePixelCoordinatesY, // Input. Reference pixels coordinate Y

 int* kr_closestShapeLandmarks, // Input. The closest landmark to each reference pixel

 int* kr_numCoordsV, // Input, Number of reference pixels

 float* kr_shapeToImage, // Input. Warped mean shape

 float* kr_estimate, // Input+Output. Intermediate shape coordinates

 float* kr_fnal) // Output. Final shape coordinates

Predict_trees() with single port arguments:

 void predict_trees(

 float* kr_sr_tg, // Input+Ouput. Updated mean residuals (accumulated correction factors)

 int kr_tg_len, // Input. Number of trees

 int kr_casc, // Input. Cascade stage

Final Version of CPSoSaware integrated platform

85

 u_split_t* kr_split1, // Input. Next node of the regressor tree (left direction)

 u_split_t* kr_split2, // Input. Next node of the regressor tree (right direction)

 u_intensities_t* kr_intensities, // Input. Reference pixel intensities

 u_thres_t* kr_node_thres, // Input. Thresholds in regressor tree nodes to select left or right direction)

 float* kr_node_mean) // Input. Correction factors for the landmark coordinates

Predict_trees() with double port per argument:

 void predict_trees(

 float* kr_sr_tg,

 int kr_tg_len,

 int* kr_casc,

 u_split_half_t* kr_split_h1_1,

 u_split_half_t* kr_split_h2_1,

 u_split_half_t* kr_split_h1_2,

 u_split_half_t* kr_split_h2_2,

 u_intensities_t* kr_intensities,

 u_thres_half_t* kr_node_thres_h1,

 u_thres_half_t* kr_node_thres_h2,

 float* kr_node_mean)

The bitstreams of the kernels with their OpenCL interface along with the corresponding ERT models pop-
ulate a library that can be accessed locally or remotely from the DSM application to switch between ERT
models and their supporting hardware kernels according to the environmental conditions. For example
different (ERT model, hardware IP core) pairs may be appropriate for male or female driver, for daytime
or nighttime conditions, etc.

Input: Bitstreams for HW implementations of Kernel_predict() or Predict_trees() kernels. The input argu-
ments of these kernels are listed above

Final Version of CPSoSaware integrated platform

86

Output: Bitstreams for HW implementations of Kernel_predict() or Predict_trees() kernels with OpenCL
interface. The output arguments of these kernels are listed above.

Xilinx Real Time (XRT) is a library that can be used to monitor several parameters of the hardware IP com-
ponents that have been loaded on the Programmable Logic (PL) of the FPGA, in real time (“TC2.4.1 Xilinx
XRT KPI monitoring”). In the DSM module XRT has been employed to dynamically change the hardware
functions implemented by the PL module. More specifically, alternative bitstreams can be loaded dynam-
ically to switch between the different IP hardware cores that support the different ERT models. For in-
stance, if the environmental conditions indicate that a different ERT model than the one already loaded,
can achieve a better tradeoff between accuracy, speed and power, XRT can load it dynamically reconfig-
uring the PL module while the software will load the corresponding ERT model. One option is to have the
multiple IP cores that support the different ERT models built in a single bitsream and call the names of
different functions incorporated in this bitstream, according to the IP core that has to be executed. A more
flexible option is to have one IP core in each bitstream and load the appropriate bitstream (from a local
source or a remote library) according to the IP core that has to be used.

Input: Sensor Indications (e.g., about night or day), HW kernel real time information, IP cores and their
features (latency, power, accuracy)

Output: Bitstreams of the IP cores downloaded to the target platform.

Final Version of CPSoSaware integrated platform

87

6 Human-Robot Interaction in Manufacturing Environment

The manufacturing use-case comprises a series of features integrated to define and support several in-
formative messages with the aim to support an Augmented Reality training on the job programmed on a
HoloLens device. The augmented reality (AR) application is designed to support training and operations
in case variants in the assembly process are present ensuring thus a proper operation continuum because
of the optimized, safe, and resilient network of information flowing in the work cell system.

In the reference use-case the information provided to the operator during the training phases are:

• Functional operation for the assembly tasks: support to operations, localization of the work-scene,
images of relevant parts, actions and so on

• Robot coordination information: information to the operator related to the safe moments of
interaction with the robot according to Human Robot Collaboration Standards

• Anthropometric parameters: height of the operator used by the robot to place the gripper in the
ergonomically optimized height depending on the specific operator; the information is also
provided to the operator in the HoloLens representation

• Ergonomics alert: an alert derived from a real-time RULA index - Rapid Upper Limb Assessment -
evaluation from the camera 3D pose landmarks

• Operator’s State Monitoring parameters
• Dizziness: calculated from the facial expressions from the operator
• Heartbeat: acquired by a smartwatch and used to provide an indication of stress, fatigue or

other physiological parameters
• Body Thermal field maximum evaluation: indicator of fatigue, stress, tiredness, risk of faint,

fever…

It is important to underline that in the CPSoSAWARE project the system was developed upon potentially
important features, connectivity and functionality were tested, but all the physiological and ergonomics
indicators used, though meaningful and representing the intended use were simply taken from literature
without dedicated developments as a demonstrator of the aimed functionality. For example, the values
calculated from the RULA index in dynamic way have no direct and sure meaning (RULA index is calculated
as an integral of a complete operation and not as a dynamically updated parameter). For this reason, the
results represented have no direct relevance and were not investigated experimentally to evaluate the
effective and more correct thresholds or trends of use. The functionality and potential connectivity were,
on the other end evaluated).

Final Version of CPSoSaware integrated platform

88

Figure 49: Hololens representation of main information provided to the operator in case of training

Figure 49 provides a snapshot of an assembly image with most of the above listed information detailed.
More details on the AR application and its information will be provided in D6.5 [2].

The different CPSs have been connected according to the current high-level architecture Figure 50.

Final Version of CPSoSaware integrated platform

89

Figure 50: Systems connected in the Manufacturing use-case

The various systems are connected and communicate through a ROS system which is coordinating mes-
sages through a proper set of Topics and subscriptions

In details the involved components are described in the following sections.

6.1 ROS communication

For the seamless integration of the components and the algorithms described above, we chose the Ro-
botic Operating System (ROS) as our middleware. ROS is an open-source framework that contains a set of
tools and libraries for developing distributed applications. Programs run on isolated nodes that can com-
municate using a publish-subscribe model. We have developed one ROS node for every camera used in
the experiment . Each node captures a frame of the camera with a frequency of 10Hz, extracts and pro-
cesses the landmarks, and finally publishes them to a relevant ROS topic. The decentralized approach of
ROS enables us to connect the cameras to different physical machines, like the Jetson TX2 embedded
device. A different node subscribes to the topics published by the cameras and extracts an optimal land-
mark set which will be used subsequently for the calculation of the posture of the operator.

Final Version of CPSoSaware integrated platform

90

Figure 51: A view that focuses on the ROS interactions

The following table (Table 9) summarized all the information regarding the exchanged messages, their
type, as well as the involving entities.

Table 9 ROS exchanged messages in manufacturing use case

Publisher Subscriber TYpe of
interface

Url/ROS Topic Data Type Description

Android app OSMCon-
troller

REST http://<ip>:<port>/pu
blish/value

POST a
JSON file

Example: {
 "operator_state" :
"alerted/drowsy",
 "heart_rate_value" :
75.0,
 "timestamp": "2022-03-
21T12:46:13.101Z"
}

Final Version of CPSoSaware integrated platform

91

Thermal2ROS OSMCon-
troller

ROS /thermal/alert Int16 An Alert which indicates
the operator's status. Possi-
ble values: 1-> Hypother-
mia, 2-> Normal, 3-> Signs
of fatigue, 4->Hyperther-
mia

zed_ros Optimal
Landmark
Selector

ROS /cam#/Landmarks Point-
Cloud2

Landmarks detected by the
zed camera

Optimal Landmark Se-
lector

ROS2RSI ROS /operator Int16 The class of the height of
the operator as calculated
by the fusion of the three
sets of landmarks

ROS2RSI Robot Con-
troller

RSI

Set the height of the opera-
tor

OSM Controller ROS2Ho-
lolens

ROS /osm/status String The status of the operator
as resulted by the fusion of
the inputs by the thermal
camera and the smart-
watch.

OSM Controller ROS2Ho-
lolens

ROS /osm String The status of the operator
as resulted by the fusion of
the inputs by the thermal
camera and the smart-
watch. Example: {

 "operator_state" :
"alerted or drowsy",

 "heart_rate_value" :
75.0,

 "thermal_alert": 1

}

OSM Controller ROS2Ho-
lolens

ROS /ergonomics String An alertr raised if the pos-
ture of the operator is not
good.

Final Version of CPSoSaware integrated platform

92

6.2 XR Training: Tools and system architecture

At the design phase of a new project that includes operators and human-robot interaction, one of the
most important aspects to define are the Human Machine Interfaces (HMI). The HMI define the interac-
tion between operators and robots in a workplace; aim of designer is define the best choice for specific
use case. In addition to the more traditional interfaces with monitor and physical dashboard, in smart
factory perspective, we can introduce innovative interfaces taken advantage from IoT solution and inter-
connection devices.

HMI is the main contact point between human and machines, so it must be useful and with low cognitive
load for users; an easy to use and easy to learn HMI could support operator on its assigned tasks with
minimum effort. Definition of the HMI is critical both to achieve advanced functionality and to access
cognitive overload. Moreover, operator’s work environment is “noisy”, with many distracting elements.

How is possible to see in literature, there are mainly three types of interfaces:

• Physical
• Natural
• Graphical

Physical interfaces include an interaction with elements such as buttons and handles; this type of interface
is characterized by possibility to interact with few physical devices with few information and low level of
complexity. Generally, this interaction elements have a visual indicator that suggest operator the available
solutions. Natural interface is a category of HMI refers to the modes of interaction typical of human com-
munication; this category includes Voice (interfaces that uses natural language to interact with machines),
Gestures (interfaces that uses a library of few gestures, each one associated to a command) and Haptic
(interfaces that uses a library of signals associated with a few simple communications in feedbacks receiv-
ing).

Graphical interfaces are the more used interfaces in industrial environment. Possibility to receive and to
send a lot of information with minimum effort represents a very strength point. This category includes a
lot of solutions, that differs by device type, such as monitors, touch devices (tablets, smartphone, etc.) or
by technology (Visual, Augmented/Mixed reality).

To pursue our objective in project, to find a solution for training and supporting operators in a guided
assembly process scenario, we identified a solution with a low cognitive load to allow operators to work
on tasks without moving away from operative workspace and without use devices that make difficult the
assembly process.

Final Version of CPSoSaware integrated platform

93

On this scenario, we identified holographic interface solution to support operator on its tasks, using an
extended reality (XR) application with a Head Mounted see-through Display (HMD), that allows operator
to work with hands free, visualizing all the information required with virtual augmented reality objects
and an interactable Graphical User Interface (GUI) into a see-through display. Extended Reality represents
part of Reality Spectrum, as described below:

• Augmented Reality (AR): overlay digital 3D contents onto the real world
• Mixed Reality (MR): it is possible to have interaction between real world and overlayed infor-

mation (AR)
• Virtual Reality (VR): user is immersed into an all-digital world

Figure 52: Reality spectrum

As follows, we present the tools and devices identified and used in planning and development phases of
the XR holographic training sub-system into automotive UC. In particular, the Microsoft Hololens 2 HMD,
the game engine and editor software Unity and the ROS libraries’ set for communication.

6.2.1 Hololens 2

The Microsoft Hololens is a wearable head mounted see-through display device that allow to visualize the
physical environment augmented with 3D digital objects. The aim is to integrate AR/MR technologies into
the workspace to improve the human operators’ conditions, growing the productivity and create new
opportunities in interaction with innovative HMI.

The use of smartglasses like Hololens allow to receive and elaborate heterogeneous data and visualize the
results and the GUI through the see-through display, working with hands free without controllers and
joypads. Furthermore, using a see-through display and eXtended Reality technologies, release the sense
of sickness into operators, very usual with HMD not see-through and Immersive Reality technologies.

The Microsoft HoloLens 2 is a wireless device that could executes customized apps based on business
needs, helping workers in training, learning, communication, and collaborative processes. As we said, the
use of Mixed reality technology allows us to interact with the physical world though digital objects, allow-
ing for extensive interaction between humans, computers, and the environment. This new approach is
based on advanced systems in computer vision and see-through display technology, graphics and CPU

Final Version of CPSoSaware integrated platform

94

processing power, input systems through gestures or voice. The application of mixed reality has led to the
inclusion of environmental input, spatial sound, location and positioning in both real and virtual spaces.

Figure 53: Microsoft Hololens 2

Microsoft HoloLens 2 is equipped with:

• Display:
o Optics: See-through holographic lenses
o Resolution: 2K 3:2 (2048x1080px per eye)
o Density: >2.5K radiants
o FOV: 52 deg.

• Sensors:
o Head tracking: 4 light cameras
o Eye tracking: 2 Infrared cameras
o Depth: 1MP depth sensor: operating with two modes:

§ AHAT (Articuled Hand Traking): depth taking through high framerate (45fps)
§ Long Throw: depth taking with low framerate (1-5 fps)

o Inertial Measurement Unit (IMU):
§ Accelerometer: used for calculating linear acceleration along X, Y or Z axes
§ Gyroscope: used for rotations
§ Magnetometer: used for the absolute orientation

o Camera: 8MP, 1080p@30fps video
• Computing:

o CPU: Qualcomm Snapdragon 850
o RAM: 4GB LPDDR4x
o Storage: 64GB (flash memory)

• Connectivity:
o WiFi: 802.11ac
o Bluetooth: v5.0
o USB: type-C (data and power supply)

Final Version of CPSoSaware integrated platform

95

Figure 54: Microsoft Hololens 2: components

The system brings a series of improvements compared to the first-generation device, including a custom-
ized DNN virtual content that allows a complete virtualization of all the information accessible through
the device. The presence of a custom holographic processing unit of second generation (HPU 2.0), enables
low-power real-time computer vision (CV) that runs all CV algorithms on the device (head tracking, hand
tracking, gaze tracking, spatial mapping, etc.) and hosts the DNN core. The CPU of the SoC remains fully
available for applications.

Hololens 2 allows also a fully articulated hand tracking and gaze tracking mechanism, improving older
functionalities. Operator could use both hands (and custom application could take advantage from this,
making new mechanisms of interaction) and interact with a very complete set of new gestures (press,
grab, direct manipulation, touch interaction and scrolling)

These features allow us to use the device in different application fields, like assembly guided assistance,
configuration of robotic flow operations, inspection of operator’s workstations to visualize data info and
status. In fact, on an assembly guided application, operators could see through the HMD all the infor-
mation required to complete the process, such as a digital animated ghost of the operation, a step-by-
step GUI with info and images, and a full operative sheet.

As reported into literature, using an HMD could involve a bigger cognitive load for operators, mainly due
to a limited Field Of View (FOV) of device (compared with human natural FOV) and compared with use of
paper instruction. But if we take into consideration a different application field, in which the use of device
is limited in time, just for training, or just for visualize info of status system without compromise the as-
sembly process, or another, a short and very specific guided activity that only a specialized operator could
carry on without instructions, a bigger cognitive load with a smaller error rate could be a useful solution.

For the aim of this current project, a device like Microsoft Hololens is the right choice in term of flexibility
(covering Reality spectrum, from Augmented to Virtual) and balancing between cognitive load and usabil-
ity.

Final Version of CPSoSaware integrated platform

96

Hololens 2 will hosts our UWP (Universal Windows Platform) holographic application to support operators
in training of a new assembly workstation or to guide operators with a step-by-step GUI for a dynamic
assembly process that requires a specialized operator or detailed instruction.

6.2.2 Unity editor

Unity is a development platform that allows to create application for different OS and device, in which is
required the development of virtual 3D scene and the use of a real-time game engine. The platform allows
us to develop UWP applications able to run on device with ARM64 CPU and using scripting backend API
IL2CPP. Core of the platform is the game engine (for physics and interaction digital-digital and digital-real),
but the editor is the interface that users use to write codes and design scenarios.

The Editor is the tool used for design and develop the 3D scenes and represents the integrated environ-
ment used for building the application. Its interface could be customized; in our case, we preferred an
easy-to-use interface in which the IDE window is divided into 4 macro-areas, ad showed below. In partic-
ular:

• The Hierarchy tab on the left, is used to show the hierarchical representation of all the compo-
nents (GameObject) in the 3D scene also in relation between each other, in a parent-child tree
schema.

• The View tab on the middle, is the 3D scene in developing; we had a Scene Point of View (POV),
in which we can insert and manipulate the components in a 3D environment (X, Y, Z space), and
the Game tab, in which we can see the preview of application result

• The Inspector tab on the right, is used to visualize and modify every single property and parameter
of a GameObject, adding new components or removing old; from inspector tab is possible to set
a GameObject as active/not active in hierarchy.

• The lower space of interface is occupied by Project and Console tabs. The project tab is the visu-
alization of the root folder of the project in a tree-hierarchy form, in which we can interact with
Assets, libraries, scripts, templates, materials and prefabs (GameObject saved for in a specific
configuration); the console tab is very useful in development phase to follow the debug.

Final Version of CPSoSaware integrated platform

97

Figure 55: Unity editor

 In the upper section, the menu bar contains the access way to all the features of game engine, in partic-
ular the configuration of Player to build application for a specific Operative System (OS) or specific device
(in our case, the Hololens 2). As we see before, the game engine is based on the concept of the GameOb-
ject. It represents the container for components; each component implements a functionality into the
virtual scenario. GameObjects can be created from scratch (adding an empty object in the hierarchy using
the "Create Empty" function) or by dragging a customizable prefab object ('<object_name>.prefab') into
the hierarchy tab. All objects have the Transform component active by default, which contains not only
the information about the position in XYZ world, the rotation in Quaternion, and the scale of the object
within the 3D scene; the Transform is the only component that cannot be removed from the GameObject
and the only one in the case of an empty object. The component also contains information about the
"parenting" of the object, which cannot be modified through the inspector tab but only through the hier-
archy tree (drag&drop) and via script; furthermore, the component is inherited by the 'child' GameObjects
(Child); the Component represents the transformation (position/rotation/scale) of the Child respect to
'parent' element (Parent).

We don’t examine over in depth the IDE on this document, because of the aim of project, but we carry on
description of our solution, and investigate over on ROS communication, and how, through the IDE/App
is possible to communicate with the ROS Network

Final Version of CPSoSaware integrated platform

98

6.2.3 ROS connector

To allow holographic application to visualize in real-time an XR guide for training in assembly process and
results about the status of workstation, we have to design a UWP app for Hololens with a communication
solution to allow information exchange with all the actors in the use case network.

Hololens 2, C# language and a UWP app based on .Net, offers a lot of solutions in term of communications.
In the image below, we show a brief recap of possible choices.

Figure 56: Hololens communication solutions

However, with the aim to allow a communication integrated into a network with heterogeneous device
and systems, according to Use Case’s project partnership, we choose a solution that allow us to integrate
our application in a ROS network.

ROS (Robot Operating System) is an open source framework used to develop software for robotics; it
provides a suite of libraries and tools designed for heterogeneous machines by creating an hardware ab-
straction. The mainly feature of cross-collaboration is at the base of the choice to use this framework in
the project to allow an easy exchange in communication between different system and different program-
ming languages.

In order to reach the target of communication between our C# application (UWP app installed into the
hololens) and the rest of the ROS Network of the project, we used the Apache 2.0 licensed software ROS-
SHARP, to implement, into the virtual scenario in development on Unity platform, a tool for sending and
receiving messages from ROS.

Final Version of CPSoSaware integrated platform

99

Figure 57: ROS – Unity Communication

ROS Sharp is a set of libraries in C# for communicating with .NET application; on the base of tool there is
a TCP endpoint running as a ROS node which facilitates message passing between Unity and ROS. The
plugin contains messages and all the scripts necessary to publish, subscribe and call service; user could
customize all scripts or messages to reach the target. The package, as open source code, is released as
source code or unity asset package.

Figure 58: Hololens communication – ROS solution

As showed in the image, our solution consists of a ROS Sharp instance integrated into the UWP application,
customized with scripts for subscribing to the ROS Topics implemented on the system. To communicate
with rest of the system, our solution requires a server integrated in a ROS node machine able to run an
instance of a websocket server based on Rosbridge.

The Libraries section of ROS Sharp contains .Net solutions for RosBridgeClient, Urdf and MessageGenera-
tion; in particular:

• RosBridgeClient, the .NET API to ROS through rosbridge_suite

Final Version of CPSoSaware integrated platform

100

• MessageGeneration, the .NET library for generating C# source code for ROS message, services and
action

• UrdfImporter, the URDF parser for .NET application

Rosbridge_suite is a BSD licensed library that contains rosbridge; it provides a JSON API to ROS function-
ality to allow messages exchange. We designed our application to works with websocket protocol. It is a
hidden layer into the application, but allow to transport a JSON message in the format Operation-Topic-
Type:

Figure 59: JSON message for subscribing (example)

The message contains all the information required in a ROS communication:

• op: type of operation, represents what action is required to do, subscribing to a specific topic or
publishing on a specific topic

• topic: the topic name
• type: the message type

The solution allows us the possibility of customizing the message type on communication also; for the
scope of use case, and according to work group, all the communication messages exchange in the ROS
network follow the standard type. RosSharp, via RosBridgeClient, contains the folder Std, in which we can
found all the standard message type in .cs format (Bool.cs, String.cs, etc etc…). It is mainly important to
increase the system flexibility.

The packages rosbridge_library and rosapi allow all the services required to communicate in a ROS net-
work, including settings params and topics; the core of the suite is the rosbridge_server library, that pro-
vides the JSON-ROS conversion and the WebSocket connection.

Final Version of CPSoSaware integrated platform

101

Figure 60: Rosbridge implementation

6.2.4 Application and test

To implement the features described before in our UWP application, we started with integration and con-
figuration of the ROS Sharp libraries package into the integrated development environment selected. To
do this, we used the Unity package version of the tool. Then, system is ready with a simple configuration,
introducing in the main scene an Empty GameObject, renamed in “ROS Connector”. This virtual object will
contain all the Components required for ROS communication; in a first time, is required to add the script
RosConnector.cs, located in “Assets/RosSharp/Scripts/RosBridgeClient/RosCommuncation/”. This script is
responsible of the WebSocket connection to the Rosbridge server.

Final Version of CPSoSaware integrated platform

102

Figure 61: Unity Editor – Ros Connector details

As visible in the inspector tab, RosConnector class allow us to set parameters to rosbridge; in particular:

• Timeout: time in seconds after that connection is closed
• Serializer: class or library used to serialize JSON; we referred to Newtonsoft’s JSON.NET frame-

work.
• Protocol: a RosSharp.RosBridgeClient.Protocols protocol used by ConnectAndWait method to con-

nect to RosBridge server. The choice is between “Web Socket Sharp” when using Unity Editor or
“Web Socket UWP” when using the Hololens.

• url: a string used for ROS bridge server url. In the example “ws://192.168.0.115:9090”

The core of RosConnector, as we said, is the possibility to connect to a ROS network to publishing or sub-
scribing at/to a rostopic. First of all, according to work group, we identify the topics and the types of
messages content to communicate over the network.

Final Version of CPSoSaware integrated platform

103

We defined four main topics, “osm”, “ergonomics”, “operator” and “robotics”; in particular:

• osm: for Operator State Monitored Status, Heart Rate Value and Thermal Alert Value.
• ergonomics: for OK/NotOK ergonomics status of operator movements
• operator: for Operator’s Height Group ID
• robotics: for Robot Operative State

The osm topics is used to communicate three different information data from different sources: these
data were merged in a single formatted string (MessageTypes.Std.String) on a JSON packet and wrote on
the network (with pre-defined frequency). Below an example of message received on topic /osm:

data: {operator_state:alerted, heart_rate_value:75.0, thermal_alert:2data: {opera-
tor_state:alerted, heart_rate_value:75.0, thermal_alert:2

}

The ergonomics topic is used to communicate a true/false status of ergonomics index analyzed on opera-
tor movements; to guarantee a more flexible tool (with possibility to add other values or codes), it was
designed as an Int16 (MessageTypes.Std.Int16) numeric data. For example, on topic /ergonomics we could
receive message,

data:'1001'data:ʹ1001ʹ

The operator topic is used to communicate height of the operator and to adapt position of robot (and
consequently the height of operator’s work plan). Analogously to ergonomics, how result of ergonomics

Final Version of CPSoSaware integrated platform

104

analysis (we’ll examine in deep later), an Int16 numeric value was shared through this topic to communi-
cate operator’s height and group ID.

Finally, the robotics topic is used on communication between robot and UWP holographic application to
inform operator on assembly phases. Similarly, to ergonomics, also for robotics we defined an Int16 nu-
meric value for messages to represent an OK/NotOK status.

Then, to pursue our objective, we created and added to the RosConnector GameObject, all the subscriber
required for communication in CPSoSAWARE system, one for each topic we would subscribe. So, we cre-
ated and customized four subscribers (three for MessagesTypes.Std.Int16 and one for Mes-
sageTypes.Std.String) to allow connection between our holographic app and the rest of ROS network.

Details about topics, parameters’ values and behavior of Holographic Graphic User Interface will be de-
scribed later.

Figure 62: ROS Topic and Subscribers

To verify our described solution, in the first phase we tested on a local network the Holographic UWP App
in development on a realistic scenario of communication: we used a local network with two machines, a
Windows10 machine running the Unity Editor (IDE) and an Ubuntu20 machine running ROS and the
ROSBridge server. The image below shows the schematic behavior.

Final Version of CPSoSaware integrated platform

105

Figure 63: Testing scenario for Unity-ROS communication

Starting the holographic application through the Editor’s Scene Tab, the connection between RosCon-
nector and rosbridge websocket server was established and the app initiates subscriptions to the estab-
lished topics. Through a second virtual machine terminal, it was possible to verify the receipt of messages
published on a specific topic in the IDE Console.

Figure 64: Configuration output: Ubuntu with ROS machine (left) and Unity Editor on Windows10 (right)

Final Version of CPSoSaware integrated platform

106

Figure 65: Details of rosbridge server output with subscribed client at topics (up) and example of publication
(buttom)

6.3 Anthropometric Recognition

In the proposed architecture, as presented in, 3 stereo cameras are utilised in order to cover the most
possible visible area of the operator’s working space, so as to increase the possibility to have a good cap-
ture of the operator pose, with the most suitable direction (i.e., direct capture in front of the operator),
at least from one of the cameras, while the operator is moving in different directions and positions. Each
RGB camera of the stereo set is used to monitor the human’s actions. A pose estimation algorithm is
running to extract the posture 2D landmarks that are used then for the 3D landmark estimation based on
a Direct Linear Transform (DTL) triangulation approach. Each stereo camera is used to extract the 3D pose
landmarks of the operator, in real-time, for height estimation and to calculate the current ergonomic state
based on the RULA score.

Final Version of CPSoSaware integrated platform

107

Figure 66: Architecture of the multi-stereo camera system.

Figure 67: Part of the used equipment.

Figure 67 present an example of the equipment that are used during the implementation of the scenario
in the manufacturing environment. Two stereo cameras are directly connected to the computer server
which runs all the necessary algorithms (2D landmark estimation, 3D landmark calculation, anthropomet-
rics and ergonomics estimation) and the third one is to a Jetson device. Jetson runs only the 2D landmark
estimation algorithm and then sends all the appropriate captured information (i.e., 2D landmarks per

Final Version of CPSoSaware integrated platform

108

frame) via ROS messages to the server (wireless connection). All of them have (i.e., server and external
devices) to be connected to the same local network. More details about the architecture, the algorithms
that are used and the steps that are followed will be presented in the D6.5 deliverable.

Table 10 presents the form of the ROS message that is sent based on the operator's height class, while
Table 11 presents the ROS message regarding the ergonomics state of the operator.

Table 10: ROS message based on the operator's height.

Operator’s height (in mm) ROS message

height < 1544 1001

1544 <= height < 1641 1002

1641 <= height < 1727 1003

1727 <= height < 1829 1004

height > 1829 1005

Table 11: ROS message based on the ergonomics state of the operator.

Ergonomics state ROS message

Safe sequence of poses 1001

Harmful sequence of poses 1002

The server sends the ROS messages (i.e., class of operator's height to the robot and ergonomics status to
the Hololens) every 6 seconds (60 frames with a rate of 10 frames per second (fps)) to the ROS topics
\operator and \ergonomics, correspondingly.

Final Version of CPSoSaware integrated platform

109

During the pilot in the CRF premises, there were not any changes to the initial architecture plan regarding
the multi-camera system. The integration of the architecture in the real environment was successfully
implemented taking also into account the observations that have been identified from the simulated en-
vironment. However, there were some considerations about the research findings that makes the real-
case scenario more challenging. More specifically, in the simulated environment, we are able to set up
the cameras in any place that we want since the simulated cameras in the unity environment do not have
physical limitations regarding the wires (they can be placed in any location and at any distance), and there
are no connection problems.

• Locations of the cameras. It is not feasible for the cameras to be placed in any location that we wanted,
and this is mostly for security reasons, since they may block the free access of the operator, they
might activate the "safety eye" that affects the movement of the robot, and also they have to be
placed in a small area inside the working room (few available locations).

• The physical connection of the devices to the server. The multi-stereo cameras system is connected

to pcs and jetson devices and it requires wires. Large extensions of the wires may have as a result
downgraded the captured resolution quality of the cameras which then affects the quality results of
the algorithm.

• Network issues. It is necessary for a stable and continuous working connection in a local network for
all devices (i.e., jetson, thermal camera, smartphone, KUKA robot) since they are connected to the
server wireless.

• Calibration of the cameras. The calibration of all cameras as an integrated system into the same world
coordinate system could negatively affect the performance of the algorithm by introducing possible
errors.

Finally, the integration in the real environment shows the correctness of the initial assumption and en-
sures that at least 3 stereo cameras are necessary for a successful implementation since at least 1 camera
must have a perfect view of the operator's body which is critical, especially in the case of the operator's
height estimation.

An example of the integrated system’s output is presented in the following Figure 68.

6.4 Backend for processing outputs of different cameras to increase robustness of the scene analysis

For the reliable height estimation of the operator, we must select the best possible landmarks configura-
tion from the involved cameras. Due to varying camera viewpoints and operator’s movement, it is ex-
pected that landmarks, detected from different cameras, will not be quite the same, nor their accuracy.
To this end, it its required to design a fusion approach which couples together the multicamera system to
provide as output the final group of anthropometric landmarks of the operator. For this task, we create
an undirected graph, consisting of cameras and landmarks as nodes and cameras along with detected

Final Version of CPSoSaware integrated platform

110

landmarks as edges. In order to take advantage of this graph topology formulation, we apply the Graph
Laplacian Processing technique using as anchor points the average landmark from each camera configu-
ration, for re-estimating landmarks’ position in an optimal manner

Figure 68: Output of the integrated system.

6.5 Operator State Monitoring

The state monitoring of the operator is conducted through the exploitation of two components, a thermal
camera and an Android application. The first is responsible for measuring the body temperature of the
operator while the second is responsible for monitoring the general status of the operator based on the
yawning activity that he/she presents and his/her heart rate values. More information about each com-
ponent can be found in the below subsections.

6.5.1 OSM Android Application

The OSM Android Application is responsible for monitoring the general status of the operator while
he/she is interacting with the robot. The main functionalities of the application are the yawning

Final Version of CPSoSaware integrated platform

111

monitoring of the operator, and the retrieval of the heart rate values. For the first, the application exploits
ML Kit which is a standalone library developed by Google, which offers the means to conduct machine
learning operations on the edge devices. From the above library the OSM application makes use of the
Facial Recognition algorithm which locates the face of the user and extracts several facial landmarks. For
the yawning estimation we utilized a MAR (Mouth Aspect Ratio) algorithm, using as input the 38 points
which form the landmark of the mouth as shown in Figure 69.

Figure 69: ML kit face detection – Point of Mouth.

From those points we utilized points 3 ,4 and 5 both from the bottom and the upper lip alongside with
points 0 and 10 which are the edges of the mouth. Having the coordinates of those points we calculated
the MAR using the following equation:

Where the points refer to Figure 70.

Final Version of CPSoSaware integrated platform

112

Figure 70: Mouth point utilized for calculating MAR

For the second functionality, the heart rate retrieval, a smartwatch was also introduced, and a dedicated
application has been developed. The smartwatch was a Samsung Galaxy Watch 4 running the Google
WearOs and the watch application was responsible for retrieving the heart rate of the operator and com-
municating the value to the handheld (mobile) application via a dedicated channel. The workflow of the
whole operation is shown in Figure 71.

Figure 71: Workflow of the OSM Android Application

Final Version of CPSoSaware integrated platform

113

As depicted the results of the MAR calculation and the Heart Rate value both contribute to the final esti-
mation of the state of the operator. The analysis results into one of two defined classes namely alerted
and drowsy.

For the communication of the results, as a first step we investigated the possibility of directly sending the
necessary ROS messages to the robot. This operation, though, could not be established for the Android
smartphone and thus an API was developed and hosted in a central computer provided by ISI. The
smartphone, the smartwatch and the computer were connected in a local network and every 5 seconds
the Android application was sending an HTTP POST request to the dedicated API with the following data
(Figure 72).

Figure 72: OSM Android Application result sent to dedicated API

Upon receival, those data were sent via ROS messages to the robot and the hololens.

Final Version of CPSoSaware integrated platform

114

7 Conclusions

This deliverable continued the previous and initial version of the integration activities for the CPSoSaware
components as reported in D5.2. The activities of T5.2, reported in this report, advanced in parallel with
the preparation and execution of the demonstrators as reported in D6.4. The knowledge and experience
gained from the demonstrators (both simulation based and real environment) has been used for fine tun-
ing the components and their integrations aiming to improve their performance and robustness of their
operation.

Final Version of CPSoSaware integrated platform

115

8 References

[1] “D1.4 : Second Version of CPSoSaware System Architecture”.

[2] “Deliverable D6.5 Final evaluation and assessment of CPSoSaware platform – CPSoSaware Consortium – December
2022.”.

[3] “D6.4 Preliminary Evaluation and Assessment of CPSoSaware Platform”.

[4] [Online]. Available: https://www.jenkins.io/.

[5] [Online]. Available: https://www.nongnu.org/cvs/.

[6] [Online]. Available: https://subversion.apache.org/.

[7] [Online]. Available: https://git-scm.com/.

[8] [Online]. Available: https://www.mercurial-scm.org/.

[9] [Online]. Available: https://www.jenkins.io/doc/book/pipeline/.

[10]
“Deliverable D4.4: Preliminary Version of CPSoS Simulation Tools and Training Data Generation”.

[11] “Khronos® OpenCL Working Group, “The OpenCL™ Extension Specification”, V3.0.12, Chapter 46,
https://registry.khronos.org/OpenCL/specs/3.0-unified/html/OpenCL_Ext.html#cl_khr_command_buffer”.

[12] “D3.2 OPENCL PROTOTYPE TO SUPPORT DISTRIBUTED EXECUTION OF KERNELS AND DATA TRANSFERS IN CPSS”.

[13] “T. Leppänen, A. Lotvonen, P. Jääskeläinen, 2022, "Cross-vendor programming abstraction for diverse
heterogeneous platforms", Frontiers in Computer Science, vol. 4, https://doi.org/10.3389/fcomp.2022.945652”.

Final Version of CPSoSaware integrated platform

116

[14] “Deliverable D2.3:”.

[15] “Deliverable D3.6:”.

[16] “Z. Ruan, T. He, B. Li, P. Zhou and J. Cong, "ST-Accel: A High-Level Programming Platform for Streaming Applications
on FPGA," 2018 IEEE 26th Annual International Symposium on Field-Programmable Custom Computing Machines
(FCCM), 2018, pp. 9-16, doi: 10.110”.

[17] “D. Tiwari, S. Gupta and S. S. Vazhkudai, "Lazy Checkpointing: Exploiting Temporal Locality in Failures to Mitigate
Checkpointing Overheads on Extreme-Scale Systems," 2014 44th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks, 2”.

[18] “ISO/TS 15066:2016 Robots and robotic devices - Collaborative robots”.

[19] A. Canciani and J. Raquet, “Absolute positioning using the Earth’s magnetic anomaly field,” Navig. J. Inst. Navig.,
vol. 63, p. 111–126, 2016.

[20] C. Yang, J. Strader, Y. Gu, A. Hypes, A. Canciani and K. Brink, “Cooperative UAV Navigation using Inter-Vehicle
Ranging and Magnetic Anomaly Measurements,” in In Proceedings of the Guidance, Navigation, and Control
Conference, AIAA, Kissimmee, FL, USA, 8–12 January 2018.

[21] F. Teixeira, J. Quintas, P. Maurya and A. Pascoal, “Robust particle filter formulations with application to ter-rain-
aided navigation.,” Int. J. Adapt. Control Signal Process, vol. 31, p. 608–651, 2017.

[22] “D3.1 Algorithms for monitoring the user and analyzing the scene by fusioning multimodal data”.

[23] “Deliverable D3.3:”.

[24] “Deliverable D6.2”.

[25] “Deliverable D5.2:”.

Final Version of CPSoSaware integrated platform

117

[26] “D4.8 Final Version of CPSoS Runtime Secutiry Monitoring Approaches”.

[27] “D3.5 Modules for enabling Security and Trust”.

[28] “Deliverable D6.2:”.

[29] “D1.2 Requirements and the Use Cases”.

[30] [Online]. Available: https://www.jenkins.io/.

[31] “Wu, Bichen, et al. "Squeezedet: Unified, small, low power fully convolutional neural networks for real-time object
detection for autonomous driving." Proceedings of the IEEE conference on computer vision and pattern recognition
workshops. 2017”.

[32] “Iandola, Forrest N., et al. "SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB model
size." arXiv preprint arXiv:1602.07360 (2016)”.

[33] “ He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of the IEEE conference on
computer vision and pattern recognition. 2016.”.

[34] “Cheng, Jian, et al. "Quantized CNN: A unified approach to accelerate and compress convolutional networks." IEEE
transactions on neural networks and learning systems 29.10 (2017): 4730-4743”.

[35] “Cheng, Jian, et al. "Quantized CNN: A unified approach to accelerate and compress convolutional networks." IEEE
transactions on neural networks and learning systems 29.10 (2017): 4730-4743”.

[36] “Lang, Alex H., et al. "Pointpillars: Fast encoders for object detection from point clouds." Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019”.

[37] “Zhou, Yin, and Oncel Tuzel. "Voxelnet: End-to-end learning for point cloud based 3d object detection." Proceedings
of the IEEE conference on computer vision and pattern recognition. 2018”.

Final Version of CPSoSaware integrated platform

118

[38] “Yan, Yan, Yuxing Mao, and Bo Li. "Second: Sparsely embedded convolutional detection." Sensors 18.10 (2018):
3337”.

[39] “Graham, Ben. "Sparse 3D convolutional neural networks." arXiv preprint arXiv:1505.02890 (2015)”.

[40] “Rothe, Rasmus, Matthieu Guillaumin, and Luc Van Gool. "Non-maximum suppression for object detection by
passing messages between windows." Asian conference on computer vision. Springer, Cham, 2014”.

[41] [Online]. Available: https://github.com/riebl/ros.

[42] [Online]. Available: https://www.asam.net/standards/detail/openscenario/.

[43] [Online]. Available: https://github.com/carla-simulator/traffic-generation-editor.

[44] “D4.7 Final Version of Design and Implementation of Smart Dynamic Network Structures for Dependable CPSs”.

[45] “Preliminary Version of Design and Implementation of Smart Dynamic Network Structures for Dependable CPSs”.

[46] “https://wiki.debian.org/iwconfig#:~:text=iwconfig%20is%20similar%20to%20ifconfig,frequency%2C%20SSID).”.

[47] “https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/networking_guide/sec-
networkmanager_tools”.

[48] [Online]. Available: https://man7.org/linux/man-pages/man8/sysctl.8.html.

[49] B. Wang, L. Yu, Z. Deng and M. Fu, “A particle filter-based matching algorithm with gravity sample vector for
underwater gravity aided navigation,” IEEE/ASME Trans. Mechatron, vol. 21, p. 1399–1408, 2016.

[50] D. .. -V. N. P. K. a. K. -D. K. S. Sedighi, “Implementing Voronoi-based Guided Hybrid A in Global Path Planning for
Autonomous Vehicles,” in 2019 IEEE Intelligent Transportation Systems Conference (ITSC), Auckland, New Zealand,
2019.

Final Version of CPSoSaware integrated platform

119

